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ABSTRACT

Many processes in astrophysical plasmas are directly related to magnetic connection in the presence of turbulent
fluctuations. Even statistically homogeneous turbulence can contain closed topological structures that inhibit
otherwise random transport of field line trajectories, thus temporarily trapping certain trajectories. When a coherent
random field perturbation is added, the trapped field lines can escape diffusively but at a suppressed rate that is
much lower than what would be estimated based on the perturbation field alone. Here we demonstrate both
trapping and escape, and show, using a novel quasi-linear theory, how to compute the suppressed diffusion that
affects the escape from the trapping structure. The effect is relevant to understanding filamentary magnetic
connection in interplanetary space and the observed dropouts in moderately energetic particles from impulsive
solar flares. Expressed here in terms of a magnetic field line random walk, this phenomenon also has analogies
in a broad range of dynamical systems that evolve as an incompressible flow in phase space with a coherent
perturbation.

Subject headings: diffusion — magnetic fields — turbulence

1. INTRODUCTION

The behavior of an ensemble of magnetic field lines subject
to transverse fluctuations is in direct analogy to phase-space
trajectories of dynamical systems that obey Liouville’s theo-
rem. Therefore, the transport of magnetic field lines having a
random perturbation is a model for certain volume-preserving
mappings in nonlinear dynamics. Furthermore, transport of
field lines, closely related to transport of charged particles (Jok-
ipii 1966), is of fundamental importance in space and astro-
physics and has a great impact on heat conduction (Chandran
& Cowley 1998), cosmic-ray transport (Jokipii & Parker 1968),
and magnetic field complexity (Matthaeus et al. 1995). Re-
cently, we showed how puzzling observations of persistent
sharp gradients of observed solar energetic particle (SEP) in-
tensities might be explained by topological trapping of field
lines by closed quasi–two-dimensional magnetic islands that
inhibit field line transport, and therefore particle transport (Ruf-
folo et al. 2003; see also Giacalone et al. 2000; Zimbardo et
al. 2004), despite the presence of a random field perturbation
in the solar wind (“slab” turbulence) that is coherent over the
two-dimensional islands. Here we examine the phenomenon of
field line trapping and escape, and show, using a novel quasi-
linear theory, that escape occurs not at the expected rate but
at a suppressed diffusive rate. The suppression is due to in-
terference between the trapping two-dimensional field and the
escape-producing slab field. The net diffusion rate is low until
the field line leaves the trapping zone and the normal rate is
recovered. The result is an extended filament of magnetic con-
nection that is unusually resistant to the slab perturbations.
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2. PHENOMENOLOGY

The magnetic field line is defined to be tangent everywhere
to the magnetic field . If is an arc length, the lines of forceB dl
are defined by the differential equation

dl � B p 0. (1)

The possibly stochastic character of an ensemble of solutions
(field lines) obtained from this equation depends crucially on
the spatial complexity of the magnetic field throughout the
region of interest. In this Letter, we use a simple model to study
the topological inhibition of the random walk of magnetic field
lines. The total magnetic field can be written asB(x, y, z) p

, where is the mean field and is theˆ ˆB z � b(x, y, z) B z b0 0

fluctuation perpendicular to the mean field. The fluctuation is
the sum of a two-dimensional field and slab turbulence, which
we write in the form

2D slabb(x, y, z) p b (x, y) � b (z). (2)

In general, we can write , where2D ˆb (x, y) p � � a(x, y)z
is called the potential function. For the pure two-a(x, y)

dimensional case, the field lines must follow level surfaces
(contours) of . Fluctuations in the solar wind are founda(x, y)
to be well described by such a superposition of slab and two-
dimensional fluctuations (Matthaeus et al. 1990; Bieber et al.
1994, 1996). Substituting timet for distancez, this model also
applies to physical or industrial processes with a systematic
two-dimensional flow (the velocity field is analogous to )2Db
and random, time-dependent shaking by an external force (the
slab fluctuation).

For a model of a single island of topological trapping in a
two-dimensional field, here we set as a Gaussian func-a(x, y)
tion:

2 2 2x � y r
a(x, y) p A exp � p A exp � , (3)( ) ( )2 22j 2j

whereA is the maximum value at the center of the Gaussian
and j represents the width of the Gaussian. Without the slab
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Fig. 1.—(a) Orbit in thex-y plane of a selected field line that lies deep in
the trapping island, showing the predominantly cyclic trajectory, which grad-
ually is transported out of the trapping region, where the motion becomes
highly irregular, and is an almost unconstrained random walk. (b) Plot of the
radial coordinate of the field line in (a) vs. the parallel coor-2 2 1/2r p (x � y )
dinate. At short distances, the radial position remains near its initial value

; the trapping island is of width . After around , ther p 15 j p 30 z p 1500

field line breaks out of the trapping structure and random walks with a much
larger amplitude.

Fig. 2.—Displacement squared in radial componentr of ensembles of field
lines. Smaller initialr corresponds to greater depth in the two-dimensional
structure ( ) and therefore more potent trapping. All field lines eventuallyj p 10
are transported diffusively with the full slab diffusive rate, but field lines
starting more deeply in the trapping island experience an effective delay in
attaining this rate.

field, the field line trajectory is a helical orbit along a cylinder
of constant with a constant angular “velocity” (in termsa(x, y)
of the distancez) , where2 2DK p a(r )/B j p [b (r )/B ]/r r0 0 0 0 0 0

is the starting radius. On the other hand, for pure slab turbu-
lence, the field lines undergo a random walk with correlation
length .lc

We numerically explore how field lines behave under the com-
bined influence of these two effects: Gaussian two-dimensional
plus slab turbulent fields. We simulate the field lines starting at
different radii of the Gaussian function and examine thea(x, y)
possible diffusive behavior of their transverse displacements. In
order to obtain the field line trajectories, we solve the field line
equations from equation (1):

2D slab 2D slabdx b � b dx b � bx x y yp , p . (4)
dz B dz B0 0

The magnetic fields are synthesized as follows. For the two-
dimensional field, we directly calculate the magnetic field in
real space from the two-dimensional potential function. For the
slab turbulence, the field is generated in wavenumber space by
specifying the shape of the magnetic spectrum and choosing
random phases of the Fourier amplitudes. We choose the Kol-
mogorov spectrum,

C
P (k ) p P (k ) p , (5)xx z yy z 2 5/6[1 � (k l ) ]z z

whereC is a normalization constant and is a coherence lengthlz

related to . The spectrum is flat when and rolls overl k K 1/lc z z

at . For , the spectral shape is proportionalk p 1/l k k k0z z z 0z

to . We use an inverse fast Fourier transform to convert�5/3k
the slab field into real space. Equation (4) is solved by a fourth-

order Runge-Kutta method with adaptive time stepping regu-
lated by a fifth-order error estimate (Press et al. 1992).

Figure 1a shows a typical trajectory of a field line in this
model field, projected in thex-y plane ( , ). Thej p 30 r p 150

field line is temporarily trapped in nearly circular orbits within
the two-dimensional island. When it eventually leaves the two-
dimensional island, the trajectory becomes irregular due to
the slab turbulence. Figure 1b is a plot of radius 2r p (x �

versus distancez of the field line shown in Figure 1a.2 1/2y )
The field line experiences small random changes in radius as
it is dominantly influenced by the two-dimensional field. It
becomes a large-scale random walk when the two-dimensional
field is not dominant.

Since typical solutions like Figure 1 are irregular, we ex-
amine the statistics of many field lines. We trace 2500 field
lines and measure the average squared radial displacement in
thex-y plane, , versus distancez. Note that the field lines2ADr S
are traced for only 10% of the length of the simulation box in
thez-direction (to avoid periodicity effects inherent in our field
generation method). In this way, our results differ fundamen-
tally from the periodic-stochastic transition that occurs in pe-
riodic toroidal domains, a topic well studied in laboratory fu-
sion and in nonlinear dynamics (Rosenbluth et al. 1966). The
present results are a model for trapping and escape in an un-
bounded or homogeneous plasma, appropriate to space and
astrophysical systems, or in the time domain, to physical or
industrial processes of long duration.

The fields are generated in box sizes 1000# 1000#
in units of the parallel coherence scale. The grid sizes100,000

are , , and . We setN p 4000 N p 4000 N p 4,194,304x y z

, , , and ,slab 2 2D 2j p 10 l p 1.0 (db /B ) p 12.5 (db /B ) p 12.5z 0 0

where and denote the rms of the slab and two-slab 2Ddb db
dimensional fields, respectively, averaged over the entire box.
With these parameters, the two-dimensional field is very strong
near the center of the two-dimensional island, as the size of
the Gaussian width is very small compared to thex-y simulation
region. Each field line starts at and a random azimuthalr p r0

angle.
Figure 2 illustrates versusz for various initial radii in2ADr S

the two-dimensional�slab case and in the pure slab case. When
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Fig. 3.—Illustration of the definitions of and .maxr Lc trap

Fig. 4.—Suppressed and full slab diffusion rates from numerical simulations
(solid lines) and the theory of suppressed diffusion for smallz (horizontal
dashed lines). The theory accurately describes the suppressed diffusion of a
set of field lines that starts deep inside the two-dimensional structure (here

).j p 10

field lines start inside the two-dimensional island, the slopes
of the mean square radial displacements change systematically
and are initially much less than the slab rate. There is a delay
in attaining faster diffusion rates, implying that field lines are
trapped temporarily due to the strong two-dimensional field.
Only at much greater distances do the field lines eventually
attain strong diffusive transport at almost the full slab rate. If
we trace the slope at long distance back to thex-axis, then we
can define an effective trapping length ( ), and we find thatL trap

this scales systematically with various parameters.
When the field lines start more deeply inside the two-

dimensional island, becomes longer. Furthermore, we canL trap

estimate the boundary of trapping ( ) and the maximum of therc

trapping length for each case ( ) from the plot of versusmaxL Ltrap trap

starting radius , as shown in Figure 3. When varying param-r0

eters such as the strength of two-dimensional and slab fluc-
tuation, correlation length, and the width of the Gaussian, an
empirical result is

2D 2 0.62 2 0.74 0.53db B l0 zmaxL ∝ . (6)trap ( ) ( )[ ] [ ]slab 1.5B db j0

On the other hand, the trapping boundary depends only onrc

the length scales of two-dimensional and slab fields and is
independent of the strength of the fluctuations. We have carried
out a numerical experiment in which field lines are started
uniformly in a circle that has a size larger thanj. For a very
strong two-dimensional field, a sharp trapping boundary ap-
pears. The field lines inside the trapping boundary are trapped
while the field lines outside this boundary quickly diffuse away.

3. THEORY OF SUPPRESSED DIFFUSION

The simulations show that when two-dimensional and slab
fields are superimposed, the field lines do not follow the con-
tours of but are also not fully diffusive with the slaba(x, y)
rate. The field lines are trapped near the center of the Gaussian
and rapidly diffuse with the slab rate only at a radial distance

. If we consider the region where the two-dimensionalr k j
field is much stronger than the slab component, we can treat
the slab fluctuation as a perturbation and apply a quasi-linear
approach. Specifically, we assume the orbit is unchanged by
the slab field at leading order and therefore its transverse po-
sition traces a circle advancing at angular velocityK with(x, y)
increasingz, that is, , .x p r cos (Kz � J) y p r sin (Kz � J)0 0

At the next order, the mean squared fluctuation in radius is

Dz Dz
12 ′ ′′ ′ ′′ADr S p Ab (z )b (z )Sdz dz , (7)� � r r2B0 0 0

where is the projection of the slab field in the radialb (z)r

direction, which changes during the circular motion. In terms
of the slab correlation function (Jokipii 1973), , with′R (Dz )xx

,′ ′′ ′Dz { z � z

Dz �
12 ′ ′ ′ ′ADr S p R (Dz ) cos (KDz )dDz dz , (8)� � xx2B0 0 ��

where the integration over all is a valid approximation when′Dz
. In terms of the power spectrum , we haveDz k l Pc xx

2A(Dr) S p P (K) P (K)xx xx�D p p p D , (9)rr slab22Dz 2 B P (0)0 xx

where is the standard (Jokipii 1966) quasi-linear slab re-Dslab

sult. The theoretical result in equation (9) tells us that the radial
motion of the field lines deeply inside the two-dimensional
island is diffusive and is associated with the slab power spec-
trum at the wavenumber resonant with the two-dimensional
angular velocity at the original radius.

To confirm the theory, we compute from the2ADr S/(2Dz)
simulations as shown in Figure 2 and compare this with the
suppressed diffusion theory. Note that this theory is only ex-
pected to hold at low , when field lines are still nearDz r p

. The comparison is presented in Figure 4. The field linesr0

starting well inside the Gaussian (of width ), such asj p 10
and 7, give good agreement with the theory while ther p 50

discrepancy between theory and simulations increases when
we start the field lines away from the center of the Gaussian.
At long distances, the field lines starting at different spreadr0

at the same rate, which is almost the rate of the pure slab case.
The diffusion rate for all cases at large distance is∼ since2Dslab

responds to the rapid field line random2 2 2ADr S p ADx S � ADy S
walk in each Cartesian coordinate (in thex-y plane), not only
in the radial direction as when . The diffusion rate in ther ≈ r0

two-dimensional�slab case is slightly lower than in the pure
slab case at long distances because there is a small probability
that escaped field lines reenter the two-dimensional island and
are again trapped. In addition, the synthetic slab field lines are
periodic in z, so there is a slightly higher probability that the
field lines return to the trapping center. However, we expect



L52 CHUYCHAI ET AL. Vol. 633

that if there were no periodicity inz, and the simulation could
be continued to much largerz, the radial diffusion coefficient
would converge precisely to the slab rate.

Our study shows that the two-dimensional field can tem-
porarily trap field lines and suppress the field line random walk
at short to intermediate distances. For large distances, all field
lines escape the two-dimensional topology and diffuse asymp-
totically at the slab rate. For the field lines starting deeply inside
the two-dimensional island, the suppressed diffusion arises be-
cause the rapid motion around the trapping island decorrelates
the radial component of the perturbation. We can use quasi-
linear theory to calculate the suppressed transport rate, which
parametrically depends on the initial radius, a measure of the
degree of trapping. This mechanism helps us to understand
complicated systems such as the two-dimensional�slab tur-
bulent magnetic field (Ruffolo et al. 2003), which is thought
to be a reasonable model for the interplanetary magnetic field.
In this model, the two-dimensional field is turbulent and there
are many islands of irregular shape. When the field lines start
within a certain region that is relevant to the injection region
of SEPs, the field lines starting near local maxima or minima
of the two-dimensional islands can be trapped within the islands
while field lines starting between islands, or near the local
saddle points, rapidly diffuse. Hence, the observed filamenta-
tion of field lines (Mazur et al. 2000) occurs at intermediate
distances due to topological trapping, which is enhanced due
to suppressed escape. At long distances, the field lines diffuse
at the unsuppressed rate.

4. CONCLUSIONS

In conclusion, we have found that a strong two-dimensional
field can inhibit the random walk of field lines due to a slab field
component. The simulations show that when we start the field
lines inside the two-dimensional island, the diffusion of field lines
systematically changes with a delay at the beginning due to the
strong two-dimensional field. The trapping boundary depends only
on the topological scalej of the two-dimensional island and the
correlation scale of the slab turbulence. The field lines locatedlc

near the maximum of the two-dimensional potential function dif-
fuse outward at a lower rate than when they are outside the two-
dimensional island. We theoretically explain the suppression of
the field line diffusion inside the two-dimensional island by a
quasi-linear theory, which is confirmed by simulations. Finally,
our study of the suppression of the random walk of field lines is
applicable to any system that consists of a systematic flow in two
dimensions on which is superimposed a spatially coherent random
walk.
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