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ABSTRACT

Recent studies have shown that transport along magnetic field lines in turbulent plasmas admits a surprising
degree of persistent trapping due to small-scale topological structures. This underlies the partial filamentation of
magnetic connection from small regions of the solar corona to Earth orbit, as indicated by the observed dropouts
(i.e., inhomogeneity and sharp gradients) of solar energetic particles.We explain the persistence of such topological
trapping using a two-component model of magnetic turbulence with slab and two-dimensional (2D) fluctuations,
which has provided a useful description of transport phenomena in the solar wind. In the presence of slab turbu-
lence, the diffusive escape of field lines from 2D orbits is suppressed by either a strong or an irregular 2D field. For
slab turbulence superposed on a 2D field with a single, circular island, we present an analytic theory, confirmed by
numerical simulations, for the trapping length and its dependence on various parameters. For a turbulent 2D+slab
field, we find that the filamentation of magnetic connectivity to the source is sharply delineated by local trapping
boundaries, defined by a local maximum in the mean squared field along the 2D orbit, because of a similar sup-
pression effect.We provide a quasi-linear theory for field-line diffusion in a turbulent 2D+slab field, which indicates
that irregularity of the 2D orbit enhances the suppression of slab diffusion. The theory is confirmed by computer
simulations. These concepts provide a physical explanation of the persistence and sharpness of dropouts of solar
energetic particles at Earth orbit.

Subject headinggs: diffusion — interplanetary medium — magnetic fields — Sun: particle emission — turbulence

1. INTRODUCTION

The nondispersive ‘‘dropouts’’ of energetic ions from about
20 keV nucleon�1 to 2 MeV nucleon�1 from impulsive solar
flares, as recently observed by the Advanced Composition Ex-
plorer (ACE ) spacecraft for a large number of impulsive solar
events, occur so frequently and over such small scales (�0.03AU)
that they cannot be attributed to large-scale magnetic discon-
tinuities and instead must be related to the small-scale structure
of the interplanetary magnetic field (Mazur et al. 2000). Similar
features have also been observed in solar electron bursts (at less
than 1.4 keV) byACE, often in coincidencewith the ion dropouts
(Gosling et al. 2004). The dropouts are generally attributed to fil-
amentation ofmagnetic connection from small regions of the solar
corona to Earth orbit as the filaments convect past the spacecraft
at the solar wind speed, an interpretation that is supported by com-
puter simulations based on a random distribution of transverse
fluctuations at the Sun (Giacalone et al. 2000), or anisotropic tur-
bulence in the interplanetary medium (independently by Ruffolo
et al. [2003] and by Zimbardo et al. [2004] and Pommois et al.
[2005]), distinct physical descriptions that are nevertheless math-
ematically similar (Giacalone et al. 2006).

Recent work has aimed at better theoretical understanding of
why the sharp dropouts occur in observations and in various com-
puter simulations, despite observations of rapid lateral diffusion
of energetic particles (e.g., McKibben et al. 2001; McKibben
2005), which might be expected to wash out the dropout features.
Generally, one expects the persistence of sharp filamentary fea-
tures not to be compatible with the homogeneous statistical ap-
proach employed in fully diffusive field-line transport models

(e.g., Jokipii 1966; Matthaeus et al. 1995; Narayan &Medvedev
2001; Maron et al. 2004). Hence, a different approach required.
In terms of a two-component (two-dimensional plus slab or
‘‘2D+slab’’) model of interplanetary turbulence, Ruffolo et al.
(2003) proposed that those solar energetic particles (SEPs) follow
magnetic field lines, some of which are temporarily trapped by
the small-scale topology of the two-dimensional (2D) turbulence.
(SEP speeds are much greater than the solar wind speed, so the
magnetostatic approximation is adequate and turbulent plasma
motions are ignored.) The idea is that interplanetary magnetic
field lines are populated with SEPs only in a localized source
region near the Sun, as is characteristic of impulsive solar flares
(Reames 1992). In the 2D+slab model of solar wind turbulence
with no free parameters, some field lines are trapped out to Earth
orbit in filaments corresponding to the small-scale topology, that
is, islands of closed orbits around O-points in the 2D turbulence
(which are filaments in three dimensions), while interstitial field
lines spread laterally to large angular distances. This leads to
the rapid observation of energetic particles from impulsive solar
flares, both in a core regionwith dropouts and, with lower density,
in an extended halo region. Note that in the ensemble average, the
field-line random walk is dominated by the 2D component, and
field-line diffusion with the diffusion coefficient (D?) as cal-
culated or observed (Ruffolo et al. 2003; McKibben 2005) would
wash out the sharp dropout features at 1 AU from the Sun that are
seen in observations and computer simulations. However, the
field lines near O-points undergo little motion due to the 2D tur-
bulence and might be expected to diffuse at a much slower rate,
hence the temporary trapping. Thus, traditional ensemble average
statistics are not appropriate for describing the dropout phenom-
enon, and insteadwe need conditional statistics that depend on the
initial location of the field line.

This previous work raises some further issues. If field lines
are temporarily trapped (in the two lateral dimensions) in islands
around O-points, then how exactly is an island defined? This is
not merely an issue of definition, because if there is no physical
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boundary, it is difficult to understand why the dropouts are so
sharp in observations and various simulation models. The is-
lands should not encompass all closed orbits in 2D turbulence,
as this would imply too high a filling factor (Kaghashvili et al.
2006). There is also an alternative suggestion that parallel trans-
port of particles along magnetic field lines for intermittent tur-
bulencewith certain parameter values could account for the dropout
phenomenon (Kaghashvili et al. 2006), though it is yet to be dem-
onstrated that intermittent parallel scattering can produce sharp
dropout features as a function of time.

Note that while Ruffolo et al. (2003) expected diffusion within
filaments at the slab rate Dslab, a study of field-line trapping in a
single Gaussian 2Dmagnetic island (a single flux tube; see Fig. 1)
with slab turbulence (Chuychai et al. 2005) has demonstrated that
the diffusive escape of field lines is in fact suppressed by a strong
2D field and can be much lower than Dslab. In this system, the
suppression effect results in an extended filament of magnetic
connection that is unusually resistant to the slab perturbations,
apparently enhancing the topological trapping. This further sug-
gests that the actual reason for filamentary magnetic connection
to source regions near the Sun is not fully understood.

In the present work, we extend the results of Chuychai et al.
(2005) for a single Gaussian 2D island with the 2D field along
circular contours (circular ‘‘2Dorbits’’), showing how the trapping
length found in computer simulations scales with various pa-
rameters and providing an explanation in terms of a quasi-linear
theory of the field-line trajectories. We then demonstrate that
the suppression mechanism also applies and is even stronger for
irregular 2D orbits, with good correspondence between the ap-
propriate quasi-linear theory and computer simulations. Thus, in
turbulent 2D+slab fields, since the suppression is most effective
where the 2D field is strong, the islands of topological trapping

(corresponding to filaments in three dimensions) are sharply de-
lineated by local trapping boundaries, usefully defined by a local
maximum in the mean squared field along the 2D orbit. These
concepts of temporary trapping by the small-scale topology of
2D turbulence, along with a suppression of the diffusive escape
from the trapping regions, can provide a physical explanation of
the persistence, sharpness, and intermediate filling factor of drop-
outs at Earth orbit, as found in both observations and various
independent simulation models.

2. TWO-COMPONENT MODEL
OF MAGNETIC TURBULENCE

2.1. Magnetic Field Model

While some of our results are for a mean field plus a single
Gaussian 2Dmagnetic island (Fig. 1) with the addition of a slab
turbulent field, as considered in Chuychai et al. (2005), we also
examine field-line trajectories in the full two-component model
of magnetic turbulence. This model considers two components
of random, transverse fluctuations: a slab component with parallel
wavevectors and a 2D component with perpendicular wavevec-
tors. This model has been shown to provide a useful description
of magnetic fluctuations in the solar wind (Matthaeus et al.1990;
Bieber et al. 1996) and the transport of energetic particles in the
heliosphere, both parallel (Bieber et al. 1994) and perpendicular
(Bieber et al. 2004) to the mean magnetic field. It has also been
used to classify or estimate various effects of solar wind turbu-
lence, such as the degree of anisotropy at different distances from
the Sun (Zank et al. 1996, 1998), inmagnetic clouds (Leamon et al.
1998), and in structures of high Alfvén speed (Smith et al. 2001,
2004). Thus, the model is apparently able to encapsulate important
features of anisotropic turbulence in the solar wind in a relatively
simple mathematical form.
In the 2D+slab model of magnetic field turbulence, we assume

B¼ B0 þ b(x; y; z); ð1Þ

where B0 is a uniform mean field in the z-direction and b is the
transverse fluctuation (b ? ẑ). (Throughout this paper the mean
field is always present, so we specify the field model in terms of
the fluctuating field b.) Here, for simplicity, the magnetic field is
static and homogeneous, which means the field does not depend
on time and the statistical properties of the magnetic field are
invariant under translations. The fluctuation b is perpendicular
to the mean field, and hbi must be zero. According to the two-
component model, the fluctuation in real space can be divided
into two parts. In the slab component of turbulence, bslab de-
pends only on z, the coordinate along the mean field, while b2D

for the 2D turbulence depends only on the perpendicular co-
ordinates, x and y. Thus, the fluctuation can be written as

b(x; y; z)¼ b2D(x; y) þ bslab(z): ð2Þ

For the 2D component, we can write

b2D(x; y)¼ :< a(x; y) ẑ; ð3Þ

where aẑ is a vector potential for the 2D component and a(x, y)
can be called the potential function. From equation (3), one can
clearly see that the 2D fluctuation is perpendicular to the gradient
of the potential function. Then, for the pure 2D case the field lines
must follow level surfaces (contours) of a(x, y), so they are typi-
cally trapped on cylinders of finite width (Fig. 1). On the other
hand, for pure slab turbulence, the field lines undergo a random

Fig. 1.—Magnetic field line trajectories for a single Gaussian 2D island, with
B = B0 ẑ þ b2D(x, y). In this model system, even with the addition of slab tur-
bulence, field-line trajectories can remain trapped for a particularly long dis-
tance with suppressed diffusive escape. The surface plot at bottom shows the
potential function a(x, y) of the 2D field.
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walk in (x, y) with correlation length lc. Therefore, when we com-
bine 2D and slab fluctuations with the mean field, the features of
the trapping and random walk of field lines are both found, and
either one can dominate depending on where the field lines are
initially located (Ruffolo et al. 2003). The two-component model
affords great efficiency for computational work. For example,
we can reduce the time to generate the turbulent field in the
simulations—instead of fully generating it in three dimensions,
which requires NxNyNz points to define the three-dimensional
fluctuations for calculations, the problem is reduced to using
only NxNy þ Nz points to generate 2D+slab fluctuations.

However, while our goal is to study the magnetic field-line
trajectories in real space, both turbulence theory and statistical
observations specify the magnetic power spectra of 2D and slab
fluctuations in wavevector space. In general, for homogeneous
turbulence the magnetic power spectrum Pij(k) is defined as
the Fourier transform of the magnetic correlation function Rij(r) =
hbi(r)bj(0)i.

The slab fluctuations in x- and y-components are specified by
the magnetic power spectra P slab

xx (kz) and P
slab
yy (kz), respectively.

The slab fluctuation is then random, depending on z, and is in the di-
rection perpendicular to the mean field. When the slab fluctuation
is superposed on the mean field, the field lines wander randomly
in space with a correlation length

lc �
R1
0

Rslab
xx (z)dz

Rslab
xx (z ¼ 0)

¼
ffiffiffiffi
�

2

r
P slab
xx (kz ¼ 0)

hb2
x i

slab
: ð4Þ

According to the relationship in equation (3), the 2D power
spectrum can be written in terms of the power spectrum A(kx,ky),
which is the Fourier transform of the autocorrelation of the po-
tential function ha(x, y)a(0, 0)i, as

P2D
xx (kx; ky) ¼ k 2

yA(kx; ky); ð5Þ
P2D
yy (kx; ky) ¼ k 2

xA(kx; ky): ð6Þ

In our computer simulations, we need to specify the shape of the
spectrum for the turbulent field. Here we choose the Kolmogorov
spectrum for both slab and 2D turbulent spectra above the outer
scale. For the slab spectrum, we use

P slab
xx (kz)¼ P slab

yy (kz) ¼
C1

½1þ (kzlz)
2�5=6

; ð7Þ

where C1 is a normalization constant given by

C1 ¼
ffiffiffiffiffiffi
2�

p �
�
5
6

�
�
�
1
2

�
�
�
1
3

�hb2
x i

slab
lz ð8Þ

and lz is a coherence length related to lc. The spectrum is flat
when kzT1/lz and rolls over at k0z = 1/lz. For kz 31/lz, the
spectral shape is proportional to k�5=3. These features are con-
sistent with observations of solar wind fluctuations (Jokipii &
Coleman 1968). For 2D turbulence, we set

A(k?)¼
C2

½1þ (k?l?)
2�7=3

; ð9Þ

which leads to a 2D spectrum according to equations (5) and (6).
Since the 2D omnidirectional power spectrum is proportional to
k?(P

2D
xx þ P2D

yy ) = k3?A, we obtain the Kolmogorov spectrum at

k? 3 1/l?. In this 2D magnetic power spectrum, high wave-
numbers are associatedwith small islands of the potential function
in real space, whereas low wavenumbers are associated with the
large islands. Thus, if we look the surface plot of the turbulent
potential function shown in Figure 2, we can see that the topology
of 2D turbulence consists of irregular hills and valleys of many
sizes. This example shows the topology and field-line random
walk for hb2i2D = 0.25B2

0, hb2islab = 0.125B2
0, l? = 0.1, and lz = 1.

It has been suggested that the typical feature size in 2D turbu-
lence is the ultrascale k̃ = (ha2i/hb2i2D)1/2 (Matthaeus et al.1995,
1999), which in this example is 0.0577.

2.2. Ensemble Average Statistics and Conditional Statistics

In our numerical simulations, we trace field-line trajectories
by solving the field-line equations

dx

dz
¼ b2D

x þ bslabx

B0

;
dy

dz
¼

b2D
y þ bslaby

B0

: ð10Þ

These are solved by a fourth-order Runge-Kutta method with
adaptive time stepping regulated by a fifth-order error estimate
(Press et al. 1992), except where noted otherwise. Themagnetic
fields are first generated in wavenumber space, and the desired
power spectrum is achieved by setting themagnitudes of the com-
plex quantities bx(k) and by(k) proportional to the square root of
the relevant power spectrum. The phases of those quantities are
independently random at different k-values, and different rep-
resentations of turbulence can be obtained for different sets
of random phases. Then we use an inverse fast Fourier transform
to obtain the fluctuating magnetic fields in real space. In our
simulations, the turbulent magnetic field is generated (except
where noted) over a box of size Lx = Ly = 40lz and Lz = 10,000lz,
and the numbers of grid points are Nx = Ny = 211 = 2048 and
Nz = 222 = 4,194,304. The field lines are traced only to a few
percent of the simulation box length in order to avoid periodic
effects.

Because of the randomness of the magnetic field, the field lines
in the two-component turbulence model undergo a random walk
that becomes diffusive at long distances. Calculating the ensemble
average of the displacement squared yields the diffusion coeffi-
cient of the field lines in the two-component model (Matthaeus
et al. 1995) as

D? ¼ 1
2
h�x2i=�z ¼ 1

2
Dslab þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1
2
Dslab

�2 þ �
D2D

�2q
; ð11Þ

whereD2D = �b2Dk̃/(
ffiffiffi
2

p
B0) andDslab = lc �b

2
slab/(2B

2
0). Note that

�b2D and �bslab denote the rms of themagnetic field in 2D and slab
components, respectively. Equation (11) is nonperturbative,
and it has been verified by numerical simulations (Gray et al.
1996) over a wide range offluctuation amplitude. If the 2D com-
ponent is not present, the diffusion coefficient will be Dslab (see
Jokipii 1966). Diffusive behavior need not occur in the pure
2D case, because all field lines must follow the contours of con-
stant potential function.

Although the ensemble average field-line random walk is well
studied in two-component magnetic turbulence, in actuality each
field linewanders differently depending on its (x, y)-location. This
leads us to study another kind of statistics in which the initial con-
dition is considered, which we call conditional statistics (Ruffolo
et al. 2003). From the 2D topology shown as the surface plot in
Figure 2, we refer to a local maximum or minimum of a(x, y) as
an O-point and a local saddle point of a(x, y) as an X-point. These
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O- and X-points are special points for a(x, y), and when the slab
turbulence is added, the field lines near O-points behave dif-
ferently from those near X-points. The field lines starting near
O-points are temporarily trapped within 2D islands, while they
rapidly spread if they start near X-points, as shown in Figure 2.
The conditional statistics for this case are demonstrated in Fig-
ure 3. We start the field lines near the O-point or the X-point,
or at random (x, y)-positions in 2D+slab turbulence, calculating
the mean squared displacement and plotting this as a function
of distance z. At large z, the mean squared displacement rises
linearly for all cases, with diffusion coefficient D? = 0.0636,
similar to the theoretical value from equation (11) for ensemble
average statistics (D? = 0.0544). This shows that at large z the
distribution of field lines has no ‘‘memory’’ of their initial lo-
cation; that is, they have spread sufficiently that they sample a
wide variety of locations, and the mean squared displacement
rises at the same rate. However, there is a varying ‘‘delay’’ at
low z, in which the mean squared displacement of field lines
starting near an O-point rises more slowly than that for field lines
starting near an X-point, because of the temporary trapping of
field lines near the O-point. (Note also that the mean squared
displacement rises as z2 in the free-streaming regime at z P1.)
We interpret the delay in z as the trapping length. Then the en-
semble average behavior lies between the extremes of starting
at an O-point or an X-point.

The characteristics and mechanisms of temporary trapping
and escape from the trapping region are explored in the following
sections. In x 3, we examine these processes for the simple model

system of a mean field plus a single 2D magnetic island plus
slab turbulence, including the suppression of diffusive escape
from the island for a strong 2D field. In x 4, we then show the
connection between the trapping behavior in this model system
and in two-component 2D+slab turbulence.

Fig. 3.—Mean squared displacement perpendicular to the mean field for field
lines that start near an O-point or an X-point, or at a random position in 2D+slab
magnetic turbulence. The delay of the onset of diffusion (the linear rise) dem-
onstrates the trapping effect.

Fig. 2.—Magnetic field line trajectories in a representation of 2D+slab turbulence starting near an O-point (red) and an X-point (blue). The surface plot at the bottom
shows the potential function a(x, y) corresponding to the 2D turbulence.
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3. FIELD-LINE TRAPPING IN A SINGLE
TWO-DIMENSIONAL MAGNETIC ISLAND

PLUS SLAB TURBULENCE

3.1. Magnetic Field Model and Field Lines

In this section, we use a simple model for the potential func-
tion a(x, y) of a single island as a Gaussian function:

a(r) ¼ A0 exp

�
� r 2

2�2

�
; ð12Þ

where A0 is the maximum value at the center of the island, �
represents the half-width of the Gaussian, and r is measured from
the center of the island. The contours of a(x, y) in this case are
circles. In the limit of no slab turbulence, the field-line trajectories
for B = B0ẑ þ b2D(x, y) have helical orbits along a cylindrical
surface of constant a(x, y) with a constant wavenumber (analo-
gous to an angular velocity) K = a(r0)/(B0�

2) = [b2D(r0)/B0]/r0,
where r0 is the starting radius as shown in Figure 1. From
equation (3), we can write

b2D(r)¼ ra(r)

�2
â: ð13Þ

The magnitude of b2D(r) is

b2D(r)¼ ra(r)

�2
¼ rA0

�2
exp

�
� r 2

2�2

�
; ð14Þ

where b2D(r) has a maximum value at r = �, that is, bmax
2D = A0/

(
ffiffiffi
e

p
�). In general, we set bslab as described in x 2.1, and we use

equations (1) and (2) to specify B.
Figure 4 shows an example of two field-line trajectories in a

Gaussian 2D field plus slab turbulence. Here the peak of the 2D
field is at (10, 10), � = 0.5, and A0 = 1. We can see that the field
line that starts near the maximum point of the Gaussian (the center
of the island) is temporarily trapped with nearly circular orbits
within the 2D island. Later, the field line escapes from the 2D
island and becomes irregular as a result of the slab turbulence.
On the other hand, the field line that starts outside the island
simply undergoes a random walk due to slab turbulence. The
behavior of the field lines in this simple model are analogous to
those of the turbulent system, except that the 2D turbulence
contains many 2D islands, including noncircular ones, of many
different sizes.

3.2. Suppressed Diffusion

When the 2D field is much stronger than the slab component,
we can analytically calculate the diffusion rate in the radial direc-
tion by using a quasi-linear approach (Chuychai et al. 2005).
We take the orbits of field lines to be approximately circular
with angular velocity K and treat the slab fluctuation as a pertur-
bation. Therefore, the mean squared displacement in the radial
direction is

h�r 2i¼ 1

B2
0

Z � z

0

Z � z

0

hbslabr (z 0)bslabr (z 00)idz 0 dz 00; ð15Þ

where bslabr (z) is the projection of the slab field in the radial
direction, which changes during the circular motion. In terms of

the slab correlation function Rslab
xx

(�z 0), with�z 0 � z00 � z 0 and
assuming axisymmetry so that R slab

xx = R slab
yy , we have

h�r 2i ¼ 1

B2
0

Z � z

0

Z 1

�1
Rslab
xx (�z 0) cos (K�z 0)d�z 0 dz 0; ð16Þ

where the integration over all�z0 is a valid approximation when
�z3 lc. Rewriting equation (16) in terms of the slab power
spectrum P slab

xx (kz),

h�r 2i¼ 1ffiffiffiffiffiffi
2�

p
B2
0

Z � z

0

Z 1

�1

Z 1

�1
P slab
xx (kz)e

�ikz� z 0

; cos (K�z 0)dkz d�z 0 dz 0:
ð17Þ

Integrating over �z 0, kz, and z 0, respectively, we have

Drr ¼
h�r 2i
2�z

¼
ffiffiffiffi
�

2

r
P slab
xx (K )

B2
0

¼ Dslab

P slab
xx (K )

P slab
xx (0)

: ð18Þ

The theoretical result in equation (18) tells us that radial motion
of the field lines deep inside the 2D island is diffusive and is
associated with the slab power spectrum at the wavenumber that
is resonant with the 2D angular velocity at the original radius.
Note that the power spectrum of slab turbulence is typically ex-
pected to decrease with increasing kz, as found in observations
of solar wind fluctuations (Jokipii & Coleman 1968) and as in

Fig. 4.—Example of two magnetic field lines in a single 2D Gaussian island
plus slab turbulence. The red field line started deep inside the island, whereas the
blue field line was initially located outside the island. The surface plot at bottom
shows the potential function a(x, y) of the 2D field.
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the spectrum we use for simulations (eq. [7]). Indeed, if the
correlation function R slab

xx (z) is positive and monotonically de-
creasing, then P slab

xx (0) > P slab
xx

(K ) for any K 6¼ 0. Thus, the ran-
domwalk occurs at a slower rate than it should in slab turbulence.
Therefore, we refer to the diffusive behavior in equation (18) as
suppressed diffusion. The suppression of diffusion arises because
the rapid motion around circular orbits effectively decorrelates
the radial component of the slab field. The radial coordinate of the
field lines increases at the slower rate until they leave the 2D
island. Thereafter the diffusion coefficient tends to the slab rate.
This theoretical result has already been confirmed by numerical
simulations (see Chuychai et al. 2005).

3.3. Trapping Length and Trapping Boundary

We note from Ruffolo et al. (2003) that the field lines near
O-points in two-component turbulence are trapped within sharp
boundaries at intermediate distances, and subsequently all field
lines become diffusive. Similar sharp features are seen in obser-
vations (Mazur et al. 2000; Gosling et al. 2004) and simulations
of particle motion (Giacalone et al. 2000; Zimbardo et al. 2004;
Pommois et al. 2005) in turbulent fields. Therefore, we aim to
understand over what distance the field lines are trapped, and
whether there are sharp trapping boundaries, for the simple model
of a single Gaussian 2D island plus slab turbulence.

We perform numerical simulations to examine the parameters
that affect the trapping length and trapping boundary. For these
simulations, we generate 10,000 field lines in each Gaussian 2D
field plus slab turbulence and compute the spread of field lines in
space as defined by the function �R(z) = R(z) � R(0), where

R(z)¼ h½x(z)� x̄(z)�2 þ ½ y(z)� ȳ(z)�2i ð19Þ

and x̄ and ȳ are the average positions at a given z. We choose this
statistic because it directly indicates the spread of the field lines
at distance z with respect to their center of spreading. We initially
start the field lines at various radii from the center of the island.
We expect that field lines starting inside and outside the 2D island
should behave differently at the beginning and that at a long
distance all field lines will leave the 2D island and diffuse at the
slab rate.

In the simulations, we vary parameters of the 2D Gaussian
island and slab turbulence to explore the effect of their strengths
and length scales on the field-line trapping. In Figure 5, we set
bmax
2D /B0 = 2.43, � = 0.5, lz = 1.0, and �bslab /B0 = 0.5 and vary

the starting radius of the field lines. From the results, we find
that when starting deep inside the island, the diffusion of field
lines systematically changes, with a delay at the beginning due
to the strong 2D field. In contrast, field lines starting outside the
boundary immediately diffuse at the slab rate, as shown in Fig-
ure 5 (top). Here, there are two length scales that we are interested
in: the trapping boundary rc and maximum trapping length Lmax

trap ,
which are calculated from Ltrap for each initial radius. To evaluate
these, we trace the straight line at long z in the�R(z) plot, where
it reflects the slab rate of diffusion, and find the z-intercept Ltrap
for each initial radius r0. Next we plot Ltrap as a function of r0 and
then fit the low-r0 portion to a straight line. The Ltrap intercept is
identified as Lmax

trap and the r0 intercept is called rc, as illustrated in
Figure 5 (bottom).

Table 1 shows the derived values of Lmax
trap and rc for varying

magnetic field parameters �, lz, b
max
2D /B0, and �bslab /B0. (Note

that the units of length are held fixed, while lz is allowed to vary.)
With additional simulations, the present analysis is more com-
prehensive than that of Chuychai et al. (2005). When we vary

the field parameters, Lmax
trap also changes and can be fitted well

with power-law relations as shown in Figure 6. Then we can
simply estimate Lmax

trap as

Lmax
trap � 1:58l 0:67z �0:33

��
B0

�bslab

�2�1:1�
bmax
2D

B0

�1:64

: ð20Þ

From Table 1, we can see that rc � �, depending only weakly
on other parameters.
We can explain the behavior of the length scales Lmax

trap and �
with suppressed-diffusion theory. From equation (18), we can see
that the diffusion coefficient of field lines in the radial direction,
Drr, depends on the power spectrum at the wavenumber kz = K
that resonates with the angular frequency of 2D field lines of
starting radius r0. For K-values in the energy-containing range
(K P1/lz) and the inertial range (K k1/lz) of the power spec-
trum of slab turbulence, we can obtain very different values of
Drr . We have K P1/lz for field lines that start at low effective
angular frequency K = b2D(r0)/r0 (e.g., outside the 2D island),
and in this case P slab

xx (K ) � P slab
xx (0). Thus, field lines starting

outside the island should diffuse at the slab rate. On the other
hand, we have K k1/lz for field lines that start at high angular
frequency, inside a sufficiently strong 2D island. At these higher
kz-values we have a Kolmogorov spectrum, P slab

xx / k�5/3
z . The

field lines in this region spread at the suppressed diffusive rate;
that is, they are temporarily trapped within the 2D island. Thus,
the trapping boundary should correspond to rc such that

lzK(rc)� 1; ð21Þ

where the power spectrum of slab turbulence rolls over.
For the specific form of a Gaussian 2D island, we use K =

a(r)/(B0�
2) and a(r) = A0 exp [�r 2/(2�2)], so K monotonically

decreases with radius r. Thus, the suppression effect is strongest
for the highest K-values at the center of the island. The condition
for the trapping boundary, equation (21), becomes

1� A0 exp (�r 2c =2�
2)lz

B0�2
; ð22Þ

rc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 ln

�
A0lz

B0�2

�s
: ð23Þ

The maximum value of the 2D field is A0/(
ffiffiffi
e

p
�) at r = �. Substi-

tuting A0 =
ffiffiffi
e

p
�bmax

2D into equation (23), we have

rc � �

�
1þ ln

�
bmax
2D lz

B0�

�2�1=2
: ð24Þ

Equation (24) shows that rc is on the order of �, with only a
weak dependence on other parameters, since the ratio bmax

2D lz/
(B0�) appears in the natural logarithm.
Since the field lines are trapped most effectively when they

are initially located at the center of the Gaussian island, we next
consider the maximum trapping length along the mean field
direction. If we start at r0 = 0 and want to estimate the�z over
which the radius reaches the trapping boundary rc, then from
�r 2 = 2Drr�z,

r 2c � DrrL
max
trap �

P slab
xx (K )

B2
0

Lmax
trap : ð25Þ
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Therefore,

Lmax
trap � r 2c B

2
0=P

slab
xx (K ): ð26Þ

Since rc is on the order of �,

Lmax
trap � �2B2

0=P
slab
xx (K ): ð27Þ

For high kz, we use a Kolmogorov spectrum for slab turbulence
as specified by equations (7) and (8). Therefore, for lzK 3 1

P slab
xx (K )� �b2

slablz(Klz)
�5=3: ð28Þ

Rewriting K in terms of bmax
2D /B0 and �, we have

P slab
xx (K )� �b2

slablz

�
B0�

bmax
2D lz

�5=3

: ð29Þ

TABLE 1

Field-Line Trapping Parameters Lmax
trap and rc for a Single

Two-dimensional Magnetic Island with Slab Turbulence

Run Parameters Fit Parameters

Run bmax
2D � �bslab lz Lmax

trap rc

1............... 0.607 0.5 0.5 1.0 2.66 0.76

2............... 1.82 0.5 0.5 1.0 15.59 0.56

3............... 2.43 0.5 0.5 1.0 22.50 0.72

4............... 6.07 0.5 0.5 1.0 121.53 0.72

5............... 6.07 0.5 1.12 1.0 19.59 0.66

6............... 6.07 0.5 1.58 1.0 9.31 0.77

7............... 6.07 0.5 0.5 0.7 94.35 0.72

8............... 6.07 0.5 0.5 0.5 73.34 0.78

9............... 6.07 0.5 0.5 0.3 54.39 0.82

10............. 2.43 0.9 0.5 0.3 27.27 1.76

11............. 2.43 0.7 0.5 0.3 25.57 1.02

12............. 2.43 0.3 0.5 0.3 18.30 0.38

Fig. 5.—Top: Spreading function�R of magnetic field lines in a single 2D island plus slab turbulence, as a function of distance z along the mean field, for varying
initial distance r0 from the island center. The definition of the trapping length Ltrap is illustrated for the case of r0 = 0.1. Bottom: Plot of Ltrap as a function of r0,
illustrating the definition of the maximum trapping length Lmax

trap and the trapping boundary rc.

TRAPPING OF TURBULENT FIELD LINES 1767No. 2, 2007



Therefore, the maximum of trapping length in equation (27) can
be scaled as

Lmax
trap � �1=3l2=3z

�
B0

�bslab

�2�
bmax
2D

B0

�5=3

: ð30Þ

The theoretical scaling for L
max
trap in equation (30) is very close to

the power-law fit that we find from the simulations (eq. [20]).
We can see that the trapping length depends on the length scales
of the 2D and slab fields, is nearly proportional to the peak 2D
field energy, and inversely depends on the slab turbulent energy.
Since (for a Gaussian flux tube) the 2D field is strongest at �, it
seems that the field lines are trapped within the region where the
2D field is strongest, which leads to the trapping boundary.
Even a 2D island of small size can trap the field lines if the max-
imum 2D field is sufficiently strong, for appropriate values of the
other parameters.

4. FIELD-LINE TRAPPING IN 2D+SLAB
MAGNETIC TURBULENCE

With the results of the previous section, we now have a
mechanism to explain the sharpness and persistence offield-line
trapping in a 2D magnetic island over a long distance, as found
in observations and simulations of the dropout phenomenon.
The mechanism by which field lines escape from the island is
diffusive, but in addition to the topological effect that removes
the 2D contribution to diffusion near O-points in a turbulent 2D

field (Ruffolo et al. 2003), we see that a strong 2D field can also
suppress the diffusive escape due to slab turbulence.
Does the mechanism of suppressed diffusive escape apply to

solar wind turbulence? The solar wind indeed has a strong 2D
component, estimated to account for 80% to 85% of the tur-
bulent energy (Bieber et al. 1994, 1996), though this is not as
overwhelmingly strong as the values used for simulations in x 3.
Another difference is that the Gaussian 2D island used in x 3
has an angular velocity b2D/r that has a maximum value and is
roughly constant at the center of the island. That specific con-
dition may not apply to turbulent 2D islands. Turbulent 2D is-
lands are not circular, so a ‘‘radius’’ is not defined, and there are
many islands of different sizes, many of which are nested. A
theoretical concern is how to define an ‘‘island’’ or a topological
region ‘‘near anO-point,’’ perhaps in terms of a trapping boundary
as in x 3.
In this section, we are able to address all these concerns and

confirm that suppressed diffusive escape indeed does apply to
the turbulent 2D+slab model, which captures many of the im-
portant features of solar wind turbulence. In x 4.1, we generalize
the theory of suppressed diffusion to noncircular 2D orbits and
confirm the theory with numerical simulations. To achieve this
with irregular turbulent islands, it is necessary to formulate the
theory in terms of the potential function. We find that quanti-
fying the parameters of the trapping and escape processes is made
considerably more difficult by the random structure of the 2D
field; nevertheless, in x 4.2 we examine the ideas of the trapping
length and maximum extent of the trapping (now in potential
rather than radius). Although we find that a consistent picture

Fig. 6.—Power-law fits of Lmax
trap as a function of (a) lz, (b) (b

max
2D /B0)

2, (c) (�bslab /B0)
2, and (d ) �.
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emerges for isolated islands, we seek a formulation that helps
identify possible trapping structures without the need to first
compute statistics of many field lines. To this end, in x 4.3 we
introduce the idea of ‘‘local trapping boundaries’’ and discuss
how the interplay between 2D flux structures and 2D magnetic
field strength leads to the likelihood of trapping.

4.1. Suppressed Diffusion

The picture of trapping and suppressed diffusive escape that
we found in the context of a singleGaussian island in the presence
of slab turbulence is satisfying only if we can extend it in a
meaningful way to the case of random 2D islands that provide
trapping and, again (for simplicity), slab turbulence to induce
the escape of field lines. The general problem is complicated by
the fact that escape from one island may or may not lead to sub-
sequent capture by nearby 2D flux structures and, therefore, the
necessity of dealing with the statistics of 2D islands rather than
an individual structure. Here, to avoid that complication we
extend the earlier calculation of suppressed diffusive escape by
again considering a single 2D flux structure, but one that allows
for arbitrary contours of the associated field line. We will con-
sider only closed 2D field lines, and we again work in the context
of a quasi-linear formulation.

Consider the slab fluctuations as perturbations to a 2D orbit
(X(z), Y(z)) that is a simply connected equipotential contour,
with a complete orbit traversed over a finite distance Z along the
mean field. This implies that there are no neutral points (b 2D = 0)
along the closed 2D field line. In general these 2D orbits are not
circles, in contrast to x 3. Nevertheless, we can apply quasi-linear
theory to explain the suppression of slab diffusion. Though the
radius r is not well defined, we can instead interpret�r as motion
perpendicular to the unperturbed 2D orbit. Alternatively, we can
express the perpendicular motion in terms of�a, the change in
a(x, y). We outline two derivations, for �r and for �a.

The derivation for �r starts as in equation (15):

h�r 2i ¼ 1

B2
0

Z � z

0

Z � z

0

hbslabr (z 0)bslabr (z 00)idz 0 dz 00: ð31Þ

In this case, the perpendicular component bslabr (z) is defined by

bslabr (z)¼ bslabx c(z)þ bslaby s(z); ð32Þ

where c(z) and s(z) are the direction cosine and sine of a normal
to the unperturbed orbit,

c(z)� dY=dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dX=dz)2 þ (dY=dz)2

q ;

s(z)� �dX=dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dX=dz)2 þ (dY=dz)2

q ð33Þ

with dX /dz = b2D
x /B0 and dY /dz = b2D

y /B0. Then from equa-
tion (31) we obtain

h�r 2i¼ 1

B2
0

Z � z

0

Z 1

�1
½Rslab

xx (�z 0)c(z 0)c(z 0 þ�z 0)

þ Rslab
yy (�z 0)s(z 0)s(z 0 þ�z 0)�d�z 0 dz 0:

ð34Þ

Because c(z) and s(z) are periodic with period Z, we can de-
fine the Fourier series

c(z) ¼
X1

n¼�1
cne

i2�nz=Z ; s(z) ¼
X1

n¼�1
sne

i2�nz=Z : ð35Þ

Note that c�n = c�n and s�n = s�n because c(z) and s(z) are real.
With the axisymmetry property R slab

xx = R slab
yy , we obtain

h�r 2i ¼ �z

B2
0

X1
n¼�1

Z 1

�1
R slab
xx (�z 0)(jcnj2 þ jsnj2)

; ei2�n� z 0=Zd�z 0: ð36Þ

Then

Drr ¼
h�r 2i
2�z

¼ Dslab

Pxx(0)

X1
n¼�1

(jcnj2 þ jsnj2)Pxx(nK ): ð37Þ

For the case of a circular 2D orbit, the above expression indeed
reduces to equation (18). We see that for a general 2D orbit, the
diffusion coefficient actually depends on the power spectrum at
various harmonics nK, weighted according to the Fourier series
of the direction cosine and sine for the unperturbed 2D orbit.

For comparison with numerical simulations, it is easier to use
a diffusion coefficient in a(x, y), defined by

Daa � 1
2
h(�a)2i=�z: ð38Þ

Note that

da

dz
¼ bslabx C(z)þ bslaby S(z); ð39Þ

where we define

C(z) � dY

dz
; S(z) �� dX

dz
: ð40Þ

By analogy with the previous derivation, we use Fourier am-
plitudes Cn and Sn defined by

C(z) ¼
X1

n¼�1
Cne

i2�nz=Z ; S(z) ¼
X1

n¼�1
Sne

i2�nz=Z : ð41Þ

We then obtain

Daa ¼
DslabB

2
0

Pxx(0)

X1
n¼�1

(jCnj2 þ jSnj2)Pxx(nK ): ð42Þ

This expression is more convenient mathematically, because of
the simpler definitions of C(z) and S(z). By Parseval’s theorem,

X1
n¼�1

(jCnj2 þ jSnj2) ¼ hC 2þ S 2i ¼ hb2i2D

B2
0

: ð43Þ

Note that C0 = S0 = 0 because the closed 2D orbit implies that
dX /dz and dY /dz integrate to zero over one period. Thus indeed
we could write

Daa ¼
DslabB

2
0

Pxx(0)

X1
n¼�1
n6¼0

(jCnj2 þ jSnj2)Pxx(nK ): ð44Þ
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Now compare this contour with an equivalent circular contour of
the same hb2i2D, in which the entire sum in equation (44) is con-
centrated at n = �1. If P slab

xx (kz) is a monotonically decreasing
function, a circular 2D orbit always has the maximum diffusion
rate Daa of any contour with the same hb2i2D. Any noncircular
2D orbit has enhanced suppression over that found in x 3.

This shows that the suppression of slab diffusion applies
when b2D is strong or the orbit is irregular. Mathematically, for a
highly irregular orbit the power spectrum is sampled mainly at
higher harmonics nK, leading to a greatly reduced rate of dif-
fusion. Physically, the suppressed diffusion is due to decorrelation
of the slab randomflights in r, the direction normal to the 2D orbit,
by rotation of the normal direction in (x, y)-space. When the orbit
is highly irregular, the normal direction rotates rapidly and the

normal excursions due to slab random flights decorrelate quickly
in z, resulting in low diffusion in the normal direction.
To verify the generalized suppressed-diffusion formula (eq. [44]),

we perform numerical simulations of field-line trajectories in
2D+slab turbulence. Note that this theory is a microscopic de-
scription, aiming to explain diffusive escape from a single 2D
contour, and does not apply to a distribution of field lines spanning
many contours. Therefore, for purposes of verifying the theoreti-
cal concepts, we use a particularly strong 2D field and a weak slab
field so that the distribution spreads slowly enough to allow amea-
surement ofDaa. In addition, quasi-linear ordering, that is, use of
unperturbed trajectories as a first approximation, formally requires
in this case that the slab turbulence be weak.
We consider an equipotential contour of constant a(x, y) around

an O-point in an arbitrarily chosen sample of 2D turbulence that
contains a visually well-defined island (Fig. 7). Here the units are
lz along x, y, and z and B0 for the magnetic field. The magnetic
field is generated over Lx = Ly = 40lz and Lz = 10,000lz, and
the numbers of grid points are Nx = Ny = 212 = 4096 and Nz =
222 = 4,194,304. For demonstration purposes, we choose the
size of the 2D island to be �lz, and the local maximum rms 2D
field along the selected contour is 3.4B0, which is located at the
level a(x, y) = 1.85. The maximum a(x, y) of this island is 2.85.
We start 10,000 field lines on the contour that has a(x, y) = 2.6
(Fig. 7, heavy curve), which is still within the 2D island and close
to the O-point. Here we perform six sets of simulations with vary-
ing slab energies �b2

slab;x /B
2
0 of 0.0005, 0.00125, 0.0025, 0.005,

0.025, and 0.125. We place field lines at random initial loca-
tions along the selected contour and then trace the field-line
trajectories and calculate Daa as in equation (38) and compare
this with the quasi-linear theory in equation (44). To obtain the
theoretical value, we analyze the unperturbed trajectory of a field
line (for pure 2D fluctuations) at the same contour level where we
perform the simulations and find Cn- and Sn-values for that un-
perturbed trajectory.
Figure 8 illustrates the results for Daa as a function of z from

the computer simulations in comparison with the theoretical
values from equation (44). In each case the theoretical value of

Fig. 7.—Contour plot of a(x, y) for a representation of 2D turbulence used
for verification of the suppressed-diffusion theory for a noncircular contour. The
heavy curve indicates the 2D orbit where the field lines start.

Fig. 8.—Magnetic field line diffusion coefficient Daa in 2D+slab turbulence from simulations (solid lines) and theoretical values (dashed lines) when �b2slab;x is varied.
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Daa is 168 times lower than the value for pure slab turbulence,
indicating significant suppression of slab diffusion. The mea-
surement is somewhat difficult because at zP1 (i.e., less than a
coherence length) the random walk is not yet diffusive, while at
long z the distribution of a-values is distorted by its nonlinear de-
pendence on the distance traveled normal to the 2D orbit. Never-
theless, we can recognize that the field-line diffusion is suppressed
as a result of the 2D field, as Daa remains nearly constant over
1P z P10, near the theoretical value, which is 5.95 ; 10�3 of
the pure-slab value.

We compare the average value of Daa where the suppressed
diffusion occurs and plot it along with the theoretical value from
the quasi-linear approach in Figure 9. It is clear that the theory
works well when the 2D field is much stronger than the slab
turbulence, that is, in the quasi-linear regime. For higher �b2

slab;x,
quasi-linear theory is expected to fail, and in addition, it is dif-
ficult to accurately measure Daa, as the field lines rapidly leave
the initial contour.

4.2. Local Trapping Length

We have seen that the suppression of diffusive escape from a
trapping region, a concept developed in the context of a single
2D magnetic island (Chuychai et al. 2005), can successfully be
generalized to fluctuating 2D fields and is even more effective
for irregular 2D orbits. We now demonstrate that the concepts of
the trapping length and maximum extent of trapping, developed
in x 3.3 for a single 2Dmagnetic island, also apply to fluctuating
fields.

In this section, we use simulation parameters similar to solar
wind conditions, as in Ruffolo et al. (2003), in particular using
�b/B0 = 0.5, a 2D-to-slab energy ratio of 80 : 20, a slab correlation
length lc = 0.02 AU, and an ultrascale of k̃ = 0.06 AU. The mag-
netic field is generated in a simulation box with Lx = Ly = 100lz,
Lz = 1000lz andNx = Ny = 211 = 2048,Nz = 222 = 4,194,304. Since
there are many islands in 2D turbulence, here we select only one
2D turbulent island to explore the diffusion of field lines that start
at different levels a(x, y) in that local island. The contour plot of
a(x, y) of the island that we choose is shown in Figure 10 at up-
per left. We pick five levels of a(x, y), and 10,000 field lines ini-
tially start on each level. The trajectories of field lines are traced
until 20 AU. Now the island has an irregular shape and is not
symmetric around the center of the island, so it is hard to use
statistics like those in x 3.3. Therefore, the statistic that we use

for field lines in this section is themean squared displacement per-
pendicular tomean field (h�x2 þ �y2i) as presented in Figure 3.
The plot of h�x2 þ �y2i as a function of distance�z is illus-
trated in Figure 10. One can see behavior similar to that shown
in x 3.3. That is, the field lines have a delayed spread at small
distances and later they approach diffusive behavior. However,
instead of slab diffusion, here we obtain the diffusion coefficient
for the two-component model (eq. [11]). The same procedure as
in x 3.3 is used in order to find Ltrap for the 2D turbulent island.
The inset at bottom right in Figure 10 shows the Ltrap of the field
lines for each level of a(x, y). Thus, if we simply use linear least-
squares fitting to determine the maximum trapping and a bound-
ary analogous to the definition of rc in x 3.3, which here we call
ac, we find L

max
trap = 5.36 AU at the maximum of a(x, y) of this

island and ac = 0.35 in units of B0lz. (Note that the new method
to find trapping boundaries that we present in x 4.3 gives the local
trapping boundary for this case at a = 1.29.) It is difficult to see
clearly in the contour plot of a(x, y) whether this boundary is the
trapping boundary, because this ac-level is located almost at the
edge of the island, and if we go further than this, there are other
islands. Therefore, we consider another definition of a trapping
boundary that might work better than ac. In the next subsection,
we present a new idea to define trapping boundaries of 2D tur-
bulence structures that depend on only the properties of the 2D
field, without knowledge of the statistics of the field-line random
walk.

4.3. Local Trapping Boundaries

In this section, we synthesize the concepts developed in pre-
vious sections to explain the sharp, persistent boundaries of mag-
netic connection that correspond to dropout features. The dropout
phenomenon can be attributed to the filamentary distribution of
magnetic connection to a small region near the Sun, that is, the
region where an impulsive solar flare injects particles onto inter-
planetary magnetic field lines. (We note in passing that the
physical mechanism or mechanisms by which particles escape
the flare region are not entirely clear.) For numerical simulations,
we select a representation of 2D+slab magnetic turbulence as
specified in x 2.1. We then trace magnetic field lines from random
positions within the injection region, a circle at z = 0, and plot
the locations of the field lines in the (x, y)-plane at various dis-
tances z. In this case the field-line tracing was performed by a
slightly different technique. Inside an individual cell defined by
Fourier transform grid points, the field-line equations (eq. [10])
are solved analytically for a bilinear interpolation of the potential
function a(x, y) and a linear interpolation of the slab magnetic
field, a method developed by P. Pongkitiwanichakul et al. (2007,
in preparation). We use simulation parameters similar to solar
wind conditions, as in Ruffolo et al. (2003), in particular by taking
�b/B0 = 0.5, a 2D-to-slab energy ratio of 80 : 20, a slab correlation
length lc = 0.02 AU, and an ultrascale of k̃ = 0.06 AU. The mag-
netic field is generated in a simulation box with Lx = Ly = 100lz,
Lz = 1000lz and Nx = Ny = 211 = 2048, Nz = 222 = 4,194,304.

As an example, consider the contour plot of the potential
function a(x, y) of a representation of 2D turbulence as shown
in Figure 11 and the corresponding scatter plots of field-line
locations in (x, y) at various z (Fig. 12). There are sharp bound-
aries to regions of temporary trapping of field lines. We seek a
mathematical prescription to identify such boundaries. Since the
field-line motion in (x, y) is dominated by the 2D field, which lies
along contours of constant a(x, y), a local trapping boundary
should lie along such a contour. Note also that the red shading in
Figure 12 shows b2

2D(x, y), and in many cases the sharp gradients
in the density of field lines correspond to regions of strong b2

2D.

Fig. 9.—Comparison between simulations and theory for the suppressed-
diffusion coefficient Daa with varying �b2slab;x.
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Therefore, we consider the mathematical prescription of a
local trapping boundary (LTB) as an equipotential contour that
has a maximum average 2D fluctuation energy when compared
with neighboring contours. More specifically, we use the average
value of |b2D|2 along the equipotential contour,

jb2Dj2av ¼
1

L

Z
jb2D(x; y)j2dl; ð45Þ

where dl is an element of arc length along the contour (in the
x-y plane) and L is the total length of the contour. The results in
this section are obtained from searches for maximum values of
|b2D|2av, starting from various trial locations. We also tried a sim-
ilar prescription replacing the average overdlwith an average over
dz, with little difference in the results.
LTBs determined according to equation (45) are shown as

solid lines in Figure 12. The mathematical prescription for LTBs
indeed corresponds closely to persistent sharp gradients in the
concentration of field lines that started in the same circle at z = 0.
Some LTBs visually correspond to an island of trapping around a
cluster of O-points, but many do not. It is interesting that the LTBs
organize the field-line connectivity much better than ‘‘regions
around O-points’’ (the topology effect alone) or the distribution
of b2

2D (the suppression effect alone). Specific examples are pro-
vided below. The LTBs incorporate the concepts of 2D topology
and suppressed slab diffusion to effectively describe the field-line
trapping and dropout phenomena.

Fig. 11.—Contour plot of a(x, y) for a representation of 2D turbulence,
indicating O-points and X-points. Near O-points, the 2D turbulence contributes
little to the field-line transport in (x, y) as a function of z.

Fig. 10.—Mean squared displacement perpendicular to the mean field for field lines that start at five different levels of the selected local 2D island (inset, upper left).
Lmax
trap of each level and the linear least-squares fit are shown at lower right.
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In Figure 12, the best example of the success of LTBs at
organizing trapping regions is provided by contours A and B
(labeled in the top left panel). The region between these two
equipotential contours effectively traps field lines over a distance
z > 2 AU. In terms of O-points and X-points visually identified
a priori in Figure 11, the strip between contours A and B includes
three O-points and one X-point. However, these O-points appar-
ently do not have individual trapping boundaries; the LTBs suc-
cessfully delineate a merged trapping zone with sharp boundaries.
Similarly, when viewing the contour plot of b2

2D in Figure 12 one
would not a priori expect sharp gradients along the particular
curves A and B. Thus, the sharp gradients are not identified by a
strong 2D field alone, but rather by equipotential contours, that
is, 2D orbits, across which the slab diffusion is apparently sup-
pressed. The trapping zone between A and B is evidently not
defined by a closed orbit around a single O-point or cluster of
O-points; for example, it extends well beyond the three O-points
identified in Figure 11. Contour A could be viewed as a trapping
boundary enclosing a cluster of O-points, in which case it serves
to delineate a zone that field lines are largely unable to cross into.
In other words, LTBs define sharp boundaries of magnetic con-
nectivity to the source, which can either trap or exclude the field

lines of interest (e.g., those on which particles were injected by
an impulsive solar flare).

The region between contours C andD is a similar strip with dis-
tinct magnetic connection. In this case, the 2D field is particularly
strongwithin the strip, and a systematic motion of the field lines is
evident as a function of z. The boundary of the injection region is
convected through the strip, providing an example of a sharp gra-
dient that is not associatedwith LTBs but rather with the boundary
of injection at the source. Note, however, that gradients associated
with the injection boundary move in (x, y) as a function of z and
are less evident for z > 1 AU. The sharp gradients associated with
LTBs are at fixed locations and are more persistent to large z.

Contours D and E in Figure 12 are local maxima of hb2
2Di that

are rather close together. They can be viewed as surrounding a
cluster of neighboring O-points, and they correspond to a major
pocket of trapped field lines. Thus, these LTBs do conform to the
expectation of Ruffolo et al. (2003) that field lines can be trapped
in regions surrounding O-points. We see that the trapping region
aroundO-points is indeed of limited extent (relevant to the ‘‘filling
factor’’ issue raised by Kaghashvili et al. 2006) and the trapping
boundary is defined by the ‘‘ridge’’ of high b2

2D surrounding this
region.

Fig. 12.—Scatter plots of magnetic field-line trajectories in 2D+slab turbulence at various distances z, for initial locations within a circular injection region at z = 0,
for the same representation of 2D turbulence as in Fig. 11. The blue curves are the mathematically defined LTBs. The red shading indicates the value of |b2D|2

corresponding to the contour plot of a(x, y) in Fig. 11.
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Contour F again surrounds a cluster of O-points, with contour
G nested inside at a higher level of a(x, y). Contour G actually
excludes field lines up to z � 1AU; thereafter, those that did get in
are effectively trapped and the region inside has a higher density
than that outside. Contour F is reasonably successful at delineat-
ing sharp gradients along part of its length, in particular defining
the outer edge of a region of trapped field lines at long z. However,
the inner edge of that region is not well delineated by our LTBs.
Note that for much of its length, F nearly coincides with C or
with H. Yet, it does play a distinct role. There is an interesting
triangular region between contours B, C, and F, which is not fully
enclosed by LTBs yet does have a high density at z = 1 AUwith a
sharp gradient along C, followed by a low density at z = 2 AU
with gradients along B and F. This type of behavior was not
expected previously and seems to correspond to a plateau of un-
usually constant a(x, y), that is, unusually low �b2D. Field lines
do flow into the triangle through the gap between B and C, but
once there they flowmore slowly, until finally evacuating system-
atically between z = 1 AU and z = 2 AU. Once again, the LTBs
identify boundaries of distinct magnetic connectivity where
strong gradients like these can occur, though in some cases such
as contour H the LTB is simply not reached by field lines from
the injection region over the z-range of interest.

Note that the LTBs are defined only with reference to the 2D
field, with no knowledge of the injection region; in particular,
they are not ‘‘tuned’’ to the size of the injection region. It is
interesting that most of the LTBs in Figure 12 extend far beyond
the injection region and are thus defined by an average over a
contour extending far from the region of interest. A clear example
is contour C, which extends very far and indeed appears to be an
‘‘open’’ contour over the scale of interest. Yet it somehow does
effectively define a sharp gradient of field-line density at the edge
of the triangle described above. A few persistent sharp gradients
are not explained by the LTBs found by our procedure, includ-
ing those noted earlier within contour F and a small group of
trapped field lines to the right of contour B, corresponding to an
O-point identified by eye in Figure 11. Nevertheless, the LTBs
succeed in discriminating regions of distinct magnetic connec-
tivity and in identifying almost all the sharp ‘‘dropout’’ gradients
that are not directly associated with boundaries in the injection
region.

One could say that the entire structure seen in Figure 12 is an
interaction between the field-line random walk, which has re-
gions of different connectivity as delineated by LTBs, and the
boundary of the injection region at z = 0. If the injection region
has a very wide lateral extent, that is, with no injection boundary
over the region of interest, then there is simply a uniform density
of field lines with no dropouts (Mazur et al. 2000; Giacalone et al.
2000). Observationally, this corresponds to the case of gradual

solar events, for which dropouts are not found. In the context of
2D+slab turbulence, the uniform density follows from Liouville’s
theorem (Ruffolo et al. 2003).
Finally, we take into account the results of x 3, which indicate

that a strong b2D can directly contribute to field-line trapping by
suppressing the diffusive escape. Now, in the case of a single
Gaussian 2D island b2D was strong throughout the core of the
island, so a substantial difference for the turbulent 2D field is the
concentration of b2

2D in narrow ‘‘ridges’’ as seen from the red
shading in Figure 12. Thus, the suppression of diffusion in a
turbulent 2D field, as demonstrated in x 4.1, is more concentrated
along distinct trapping boundaries. The processes of field-line
trapping and diffusion for the two types of 2D fields are sum-
marized in Table 2. For the turbulent 2D field, the LTBs are ap-
parently curves of low lateral diffusion, effectively separating
regions of different magnetic connection to the source. The sharp
gradients in the density of field lines connected to the injection
region at the source are almost all associated with either (1) LTBs
as defined by our mathematical prescription, with reference only
to the 2D magnetic fluctuations, or (2) boundaries of the injection
region.

5. SUMMARY AND CONCLUSIONS

Overall, the present study supports the basic idea that the drop-
out phenomenon, in which the observed SEP flux from impulsive
solar flares rises and drops suddenly and nondispersively, is as-
sociated with filamentation of magnetic field line connection to
the source (Mazur et al. 2000; Giacalone et al. 2000). The tem-
poral features correspond to particle-rich magnetic filaments con-
vecting past the spacecraft. The impulsive solar flare injects
particles over a limited spatial region at the Sun (Reames 1992),
and field lines connected to that region have a highly nonuni-
form distribution at 1 AU. In our view (Ruffolo et al. 2003), at
1 AU some field lines are still trapped in filamentary structures
while others have escaped to travel far in the lateral directions.
Here, using numerical experiments with model fields, we have
shown that this is a natural consequence of anisotropic turbu-
lence, which, for solar wind parameters, implies that the lateral
motion of field lines cannot be viewed as uniformly diffusive
over a scale of 1 AU.
In the 2D+slab model of magnetic turbulence, thought to be a

relevant idealization of solar wind fluctuations, the average dif-
fusion can be quite strong, as is indeed inferred from observations
of the lateral transport of SEPs (Ruffolo et al. 2003; McKibben
2005). However, the contribution to the ensemble average diffu-
sion coefficient due to the 2D fluctuations is dominant for these
parameters, and the implied diffusive rate of lateral spread, while
accurate for the ensemble as a whole, does not apply initially to
field lines that start near an O-point of the 2D turbulence. Thus

TABLE 2

Comparison of Processes of Trapping and Diffusion of Magnetic Field Lines for a Uniform Mean Field plus Two-dimensional Field plus Slab Turbulence

Process Gaussian 2D Islanda 2D Turbulenceb

Trapping ........................................................................................ Within � of the O-point Within local trapping boundaries

Ensemble average diffusion.......................................................... Slab diffusion Combination of 2D and slab diffusion,

2D-dominated for solar wind conditionsc

Motion within the trap.................................................................. 2D motion plus suppressed slab diffusion 2D motion plus slab diffusion

Escape from the trap..................................................................... Suppressed slab diffusion Suppressed slab diffusion

Requirements for suppression of diffusive escape....................... Strong 2D field Moderate 2D field plus irregular 2D orbit

a The 2D field is defined by eqs. (12) and (13); see Fig. 1.
b See Fig. 2.
c Matthaeus et al. 1995.
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the small-scale topology of 2D turbulence plays a role in re-
stricting the lateral motion of field lines, with some subset of
field lines (those ‘‘trapped’’) approaching the full diffusive limit
much more slowly than the ensemble average behavior. Further-
more, during the trapping phase the contribution of slab fluctua-
tions to the field-line random walk is suppressed by a strong 2D
field (Chuychai et al. 2005), an effect that further delays lateral
spread. The present work shows that the ingredients of topological
trapping and suppressed diffusive escape do apply to the 2D+slab
model of turbulence with parameters suitable to describe the
solar wind, and we can both qualitatively explain the sharp fil-
amentation patterns and quantitatively explain their persistence be-
yond a distance of 1 AU. We note that the 2D+slab model is an
idealized approximation, and we view the separate components as
representing (1) the structure that causes trapping (2D part) and
(2) the turbulence that induces escape (slab part). In reality the
wavevector distribution should be broader, and for example, the
2D part might be generalized as a flux tube that varies weakly in
the parallel direction (as in reduced MHD [Montgomery 1982;
Zank &Matthaeus 1992] or the GS model [Goldreich & Sridhar
1995]). The slab component might generalize in a variety of ways
to a broadband incoherent MHD wave spectrum.

To quantify the phenomena of trapping and diffusive escape
of field lines from topological traps associated with transverse
complexity of turbulence, we have introduced several concepts.
For a specified 2D island, whether regularly shaped (Gaussian)
or irregularly shaped (turbulence), we find that the advance of
the mean squared lateral displacement toward its asymptotic un-
trapped limit is delayed by trapping, and the effect is enhanced
when field lines start more deeply inside a 2D island. ‘‘Deeper’’
here means that the field line is insulated from the distant out-
side region by larger transverse (poloidal or 2D) magnetic flux.
Quantifying this effect in a simpleway leads to the notions ofmax-
imum trapping length, which occurs for the most deeply trapped
field lines, and a critical radius (or value of the potential) beyond
which field lines are too weakly trapped to see any delay in lateral
transport at all. While some insight derives from this perspective,
there are limitations: to quantify trapping in this way, one needs to
look at one specific magnetic island, and furthermore, one needs
to examine conditional statistics of many field lines.

To partially alleviate these difficulties, we introduced the notion
of local trapping boundaries (LTBs). All closed 2D field lines
might be viewed as potential trapping regions, but it turns out that
islands with more flux contained in them, or more properly, more

flux per unit radius, seem to provide better traps. This means that
field lines with strong average 2D magnetic field strength (flux
density) are good candidates to trap field lines effectively. These
are the LTBs, which can be calculated from the 2Dmagnetic field
alone,with no reference to the statistics of field lines.Nevertheless
our numerical experiments show that the LTBs provide a good
estimate of where trapping will occur.

We find from the above discussion that suppressed diffusion is
an important process that is expected to contribute to the dropout
features of field lines over a distance of 1 AU. The assumption is
that the interplanetary magnetic field is highly structured in the
direction transverse to the mean field, in the sense of 2D turbu-
lence. Therefore, near injection regions field lines may be near
either near O- or X-points, and for some span of distances, these
lead to different rates of lateral spread. The field lines near the
O-points experience suppressed diffusion and diffuse in the di-
rection perpendicular to the mean fieldmore slowly than the field
lines near the X-points. Therefore, these different rates of spread-
ing lead to inhomogeneous features and sharp gradients of the
field-line density in the direction perpendicular to the mean field.
If these field lines represent the guiding centers of the SEPs in-
jected from a localized source near the Sun, the particles then
follow those field lines. We find a dropout-like distribution of
the field lines (surrogates for particles) at 1 AU if the size of the
island is about 0.03 AU. From this study, we can say that the
field lines can be trapped for distances longer or shorter than 1AU,
and also for trapping-island sizes that can be larger or smaller
than 0.03 AU, depending on the magnetic field parameters as de-
scribed above.Conversely, in principle our formulation of the trap-
ping length might be used to analyze observed dropout features
in conjunction with magnetic field parameters of the solar wind,
using other methods to model or constrain the topology of the
nearbymagnetic field (Hu&Sonnerup 2003). In thisway the pres-
ent analysis may lead toward a physical explanation of the per-
sistence, sharpness, and intermediate filling factor of dropouts of
SEPs at Earth orbit, as found both in observations and in various
independent simulation models.
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