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ABSTRACT

Two-dimensional (2D) models of magnetic field fluctuations and turbulence are widely used in space, astrophys-
ical, and laboratory contexts. Here we discuss some general properties of such models and their observable power
spectra.While the field line randomwalk in a one-dimensional (slab) model is determined by the correlation scale, for
2Dmodels, it is characterized by a different length scale, the ultrascale.We discuss properties of correlation scales and
ultrascales for 2D models and present a technique for determining an ultrascale from observations at a single space-
craft, demonstrating its accuracy for synthetic data. We also categorize how the form of the low-wavenumber spec-
trum affects the correlation scales and ultrascales, thus controlling the diffusion of magnetic field lines and charged
test particle motion.

Subject headinggs: diffusion — magnetic fields — turbulence

1. INTRODUCTION AND BACKGROUND

Two-dimensional (2D) models have been extensively studied in
magnetohydrodynamic (MHD) turbulence (Fyfe & Montgomery
1976; Fyfe et al. 1977) and appear as an asymptotic limit of an-
isotropic low-frequency MHD turbulence in a regime known as
reducedMHD (RMHD; Strauss 1976;Montgomery 1982; Higdon
1984; Goldreich & Sridhar 1995). QuasiYtwo-dimensional, RMHD,
or related models appear in descriptions of laboratory plasma
behavior and coronal magnetic fields and lie at the core of recon-
struction techniques (Hu & Sonnerup 2003) based on the Grad-
Shafronov equation.Quasi-2D andRHMDmodels are characterized
by gradients in the direction along the mean magnetic field that
are weak compared to gradients in the transverse directions. In
interplanetary studies, there is evidence that the magnetic field
fluctuations admit a strong component of nearly two-dimensional
character, comprising perhaps 70%Y90% of the turbulent inertial
range energy budget (Bieber et al. 1996). This has leading order
consequences for the scattering properties of cosmic rays of solar
(Bieber et al. 1994) and Galactic (Burger & Hattingh 1998) ori-
gin. Themagnetic field in the plasma sheet of the Earth’smagneto-
tail is also believed to have a quasi-2D structure (Montgomery
1987; Borovsky et al. 1997).

Motivated by these applications, each of which may refer-
ence, in certain approximations, the detailed properties of two-
dimensional turbulent magnetic (or velocity) fields, we examine
here some distinctive properties of the power spectra of 2D tur-
bulent, divergence-free fields. We then examine the nature of the
correlation scales and ultrascales, the latter being distinct scales
that determine the field line diffusion and particle transport prop-
erties. As both of these types of length scales are sensitive to the
long-wavelength behavior of the power spectrum, the nature of
the structures at energy-containing and larger scales have impor-
tant quantitative effects on transport phenomena in astrophysical
plasmas with quasi-2D turbulence. To this end, we categorize the
low-wavenumber spectrum, including constraints from homo-
geneity requirements, and determine how it affects the correla-
tion scale and ultrascale. Furthermore, we provide a technique

for determining the ultrascale from observations, which has been
successfully tested for simulated data

2. BASIC PROPERTIES OF 2D MODELS

We consider models in which the total magnetic field B(x) ¼
B0 þ b(x) is the sum of a uniformmean fieldB0 and a fluctuation
b that is perpendicular to the mean, b = B0 ¼ 0. Furthermore, let
the fluctuation field depend only on the two transverse coordi-
nates, so that

b(x; y) ¼ : < a(x; y) ẑ ¼ @a=@y;�@a=@x; 0ð Þ; ð1Þ

where a ẑ can be interpreted as a vector potential for the 2D com-
ponent of turbulence, and a(x; y) is a potential function or a po-
loidal (transverse) flux function, in the sense that

R 2

1
b2D = n̂ d‘ ¼

a(2)� a(1), where d‘ is the line element along any curve con-
necting points 1 and 2, n̂ ¼ t̂ < ẑ is the 2D normal to that curve, and
t̂ is the unit vector tangent to d‘. We do not address the dynamical
situations that give rise to two dimensionality, but rather examine
some of its properties that might be relevant in applications.
The term ‘‘two and a half dimensional’’ fluctuations usually

refers to the case in which a parallel component of the fluctua-
tions is also present, but depending only on the transverse coor-
dinates, so that b2:5D(x; y) ¼ (@a/@y;�@a/@x; bz(x; y)). However,
for most of what follows, we discuss the 2D model (eq. [1]).

2.1. Periodic and Unbounded Representations

As in treatments of fully three-dimensional turbulence, it is
useful to work sometimes in a large but finite periodic box of side
2�L, in which functions, such as the potential function, can be
expressed in a Fourier series. For example, we have a(x; y) ¼
�kãL(kx; ky) exp(ik = x), with the sum running over kx; ky ¼ 0;
�k0;�2k0: : : , where k0 ¼ 1/L is the smallest allowed nonzero
wavenumber, and therefore thewavenumber spacing. To pass to the
homogeneous (infinite) system limit, all physical scales
are held fixed while the box size increases (L ! 1). In this way,
for example, the spectrum of the potential function ÃL(k) ¼
h ãL(k)j j2i in the periodic domain of size L is asymptotically
related in the usual way to the homogeneous spectral density
A(k) ¼ limL!1(L)dÃL(k). Here the dimensionality is d ¼ 2, and
the brackets h: : :i denote an ensemble average or equivalent
time-space average. With this limit understood, this allows us
to freely pass between the periodic and homogeneous cases,

1 Bartol Research Institute and Department of Physics and Astronomy,
University of Delaware, Newark, DE 19716.

2 Department of Physics, Faculty of Science, Mahidol University, Bangkok
10400, Thailand.

956

The Astrophysical Journal, 667:956Y962, 2007 October 1

# 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.



and a symbol with a tilde (˜) designates the periodic counter-
part. Below, the wavevector is understood as two-dimensional,
k ¼ (kx; ky; 0), unless stated otherwise. Note that the spectrum
of 2D fluctuations can be embedded conveniently in a full three-
dimensional spectrum according to S 3D(k) ¼ S(kx; ky)�(kz).

In the periodic domainand using b̃L ¼ ik < ẑãL(k), one easily
sees that S̃ L

xx(k)¼h b̃xL(k)
�� ��2i ¼ k

2
y ÃL(k) and S̃

L
yy(k)¼h b̃y L(k)

�� ��2i ¼
k 2
x ÃL(k). This corresponds to the expected homogeneous sym-
metric spectral tensor (Batchelor 1970)

Sij(k) ¼ �(2)ij � kikj

k 2

� �
S(k); ð2Þ

where �
(2)
ij is the identity tensor in the (x; y) plane, and S denotes

the modal spectral density S(k) ¼ (k 2
x þ k 2

y )A(k)¼ k 2A(k). The
solenoidal condition is explicitly satisfied: kiSij ¼ kiSji ¼ 0.

2.2. Reduced Spectra

Each of the spectra is the Fourier transform of a correspond-
ing two-point correlation function. That is, defining Rij(r) ¼
bi(x)bj(xþ r)
� �

, the spectra are

Sij(k) ¼ (2�)�3

Z
d 3r Rij(r) exp (�ik = r): ð3Þ

Here x and r are, respectively, the (arbitrary) absolute position
vector and the lag vector in the (x; y) plane. Usually measure-
ments are made along a line, so that only quantities such as
R(x; 0) or R(0; y) are known experimentally. This would be the
case in a wind tunnel or using instrumental data from a single
spacecraft in the solar wind. The Fourier transforms of these
measured correlation functions, known as reduced spectra, are
therefore frequently relevant. We also define R ¼ Rxx þ Ryy and
hb2i ¼ hb2

x i þ hb2
y i:

Consider the reduced spectrum associated with R(x; 0), i.e.,
for measurement locations displaced only along the x-direction.
Then there are two independent reduced spectra, the parallel or
longitudinal spectrum,

S r
xx(kx) ¼

Z 1

�1
dky 1� k 2

x

k 2

� �
S(kx; ky) ¼

Z 1

�1
dkyk

2
y A(k); ð4Þ

and the perpendicular or transverse spectrum,

S r
yy(kx) ¼ k 2

x

Z 1

�1
dky A(k): ð5Þ

Examples of reduced spectra are shown in Figure 1.
An important relationship exists between these two when 2D

turbulence is axisymmetric. In that case, A(k) ¼ A½(k 2
x þ k 2

y )
1=2�,

Fig. 1.—Example of axisymmetric 2D magnetic power spectra with two length scales: k2, the 2D bendover scale, and k, which marks the onset of long-wavelength
( low-wavenumber) behavior. Here S(k) is specified by eq. (26) for p ¼ �1 (dotted lines), p ¼ 0 (dashed lines), p ¼ 2 (solid lines), and p ¼ 4 (dash-dotted lines), with
C b2
� �

¼ 1, � ¼ �5/3, k2 ¼ 1, and k ¼ 100. (a) Omnidirectional energy spectrum, E(k); (b) modal spectrum, S(k); (c) longitudinal reduced spectrum, S r
xx(kx); and

(d ) transverse reduced spectrum, S r
yy(kx).
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and thus k�1
x @A/@kx ¼ k�1

y @A/@ky ¼ k�1@A/@k. Using this,
one immediately sees that dS r

xx(kx)/dkx ¼ kx
R
dky ky dA/dky ¼

�kx
R
A dky , with the latter step following after integration by

parts. Therefore, the two reduced spectra are related by

�kx
dS r

xx(kx)

dkx
¼ S r

yy(kx): ð6Þ

This has important observational consequences. In standard
time series analysis, or for so-called slab turbulence (with bx; y
varying only in z), one becomes accustomed to observed reduced
spectra that ‘‘bend over’’ at somewavenumber 1/k, and for lower
wavenumbers, the spectrum becomes flat at a level of order S �
hb2ik (see more on this below). However, for pure 2D turbu-
lence, this cannot occur for both observed spectra. From equa-
tion. (6), if S r

xx � constant at low kx , then S
r
yy ! 0 in that range

of scales (as in Fig. 1, for p ¼ 0, 2, and 4). Likewise, if S r
yy �

constant at low kx , then S r
xx logarithmically diverges as kx ! 0

(as in Fig. 1, for p ¼ �1). This behavior is related to the nature of
the large closed islands that can exist in 2D turbulence.

3. CORRELATION SCALES AND ULTRASCALES

In the classical definitions of homogeneous turbulence (Batchelor
1970), the correlation scale (or integral scale) is associatedwith the
area under the correlation function. Just as there are two reduced
spectra, there may be two correlation scales in 2D turbulence,
again depending on whether the Cartesian component involved
is in the direction of integration or perpendicular to it. Thus the
longitudinal correlation scale is

kck ¼
R 1
0

Rxx(x; 0) dx

Rxx(0; 0)
¼ �

b2
x

� � S r
xx(kx)jkx¼0

¼ �

b2
x

� � Z 1

�1
k 2
y A(kx ¼ 0; ky) dky ð7Þ

and the lateral, or transverse, correlation scale is

kc? ¼
R 1
0

Ryy(x; 0) dx

Ryy(0; 0)
¼ ��

b2
y

� S r
yy(kx)jkx¼0

¼ ��
b2
y

� k 2
x

Z 1

�1
A(kx; ky) dky

� �
kx¼0

: ð8Þ

From the last expression it is clear that kc? � 0, unless the in-
tegral I ¼

R
dky A(0; ky) is infinite. Note that for axisymmetric

turbulence, I ¼ 1
�

R
d 2k A(k)/k, which, as is seen below, may be

interpreted as proportional to the correlation scale of the poten-
tial function a(x; y).

It is also convenient to define a total correlation scale for the
2Dmodel, kc2, as the normalized area under the trace of the spec-
tral matrix,

kc2 ¼
R 1
0

R(x; 0) dx

b2h i
¼ �

S r
xx(kx ¼ 0)þ S r

yy(kx ¼ 0)

b2h i

¼
2�

R 1
0

k 2A(k) dky
� 	

kx¼0

b2h i ; ð9Þ

and if we assume axisymmetry,

kc2 ¼
R
S(k)=k½ � d 2k

b2h i : ð10Þ

Each of these expressions follows readily from the basic prop-
erties given above.
In the case of one-dimensional (slab) turbulence, the correla-

tion length would not only characterize the length over which the
correlation function R is substantial, but would also determine
the diffusion coefficient in the field line random walk (Jokipii &
Parker 1968):

Dslab ¼
kc
2

b2
� �
B2
0

; ð11Þ

where we define the field line diffusion coefficient in, say, the
x-direction, by D � h�x2i/(2�z).
In contrast, a different length scale, distinct from the correla-

tion scales, enters in applications of 2D turbulence and can be
defined for axisymmetric fluctuations as

k̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
d 2k S(k)k�2

b2h i

s
¼

ffiffiffiffiffiffiffiffiffiffi
a2
� �
b2h i

s
: ð12Þ

This definition differs by a factor 1/
ffiffiffi
2

p
from that in Matthaeus

et al. (1995). For most reasonable forms of the spectrum, this
length scale is larger than the correlation scale, and for this rea-
son, k̃ has been called the ultrascale. The ultrascale or its analogs
appear in theories of self-diffusion in hydrodynamic turbulence
(Salu &Montgomery 1977) and diffusion in guiding center plas-
mas (Taylor &McNamara 1971). The ultrascale also emerges in
the description of the 2D contribution to the magnetic field line
random walk for the axisymmetric case (Matthaeus et al. 1995),

D2D ¼ k̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2h i=2

p
B0

; ð13Þ

where it is assumed that the 2D fluctuating field is perpendicular
to themean field. Equation (13) suggests that k̃ can be interpreted
as the perpendicular coherence length of the field line random
walk (Ruffolo et al. 2004), a typical radius of curvature of the
field line trajectory in (x; y), and a typical ‘‘island’’ size of the 2D
turbulence (see also Matthaeus et al. 1999). The ultrascale also
arises in certain limits of charged particle transport in composite
(slab + 2D) turbulence (Matthaeus et al. 2003; Minnie et al.
2007).
For nonaxisymmetric 2D fluctuations, the diffusion coeffi-

cients can be different in the x- and y-directions. In analogy to the
two correlation scales, let us introduce different ultrascales for
different directions, so that equation (13) becomes

Dx �
�x2
� �
2�z

¼
k̃x

ffiffiffiffiffiffiffiffiffiffi
b2
x

� �q
B0

;

Dy �
�y2
� �
2�z

¼
k̃y

ffiffiffiffiffiffiffiffiffiffiffi
b2
y

D Er
B0

; ð14Þ

where

k̃x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

Sxx(k)

k 2
x þ Dy=Dx

� �
k 2
y

d 2k


Z
Sxx(k) d

2k

s
;

k̃y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

Syy(k)

Dx=Dy

� �
k 2
x þ k 2

y

d 2k


Z
Syy(k) d

2k

s
: ð15Þ
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This reduces to equation (12) for the axisymmetric case. In com-
bination, equations (14) and (15) represent two coupled, implicit
equations for Dx and Dy. Ruffolo et al. (2006) have solved these
analytically for the case where A(k) is constant along ellipses
instead of circles, representing axisymmetric turbulence that is
stretched in one direction. For a given aspect ratio of the ellipse,
�, their results imply that

k̃x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ � 2

2

r
k̃1; k̃y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ � 2

2� 2

s
k̃1; ð16Þ

where k̃1 is an ultrascale for the axisymmetric case � ¼ 1.
It is clear that a number of characteristic length scales can be

defined in 2D turbulence (as in 3D). For example, considering
axisymmetric 2Dmagnetic fluctuations, one can define a series of
length scales from themoments in k-space of the energy spectrum,R

d 2k S(k)k�R
d 2k S(k)

: ð17Þ

The � ¼ �2 moment determines the ultrascale, the � ¼ �1 mo-
ment is proportional to the correlation scale, and � ¼ 2 is related
to the so-called Taylor microscale, which we do not discuss fur-
ther here (see Batchelor 1970). The sequence of characteristic
lengths can be equally well defined in terms of the spectrumA(k).
One should note that if the correlation function depends para-
metrically on a single scale, as is the case for a simple exponen-
tial, then all the above moments are related to one another in a
simple way. But for an arbitrary correlation function, each of
the above lengths is completely independent.

4. BEHAVIOR OF THE SPECTRUM
AT VERY LARGE SCALES

First let us examine the behavior of A(k) as k ! 0. We as-
sume axisymmetry and sufficient regularity to permit a Taylor-
Maclaurin series at the origin in wavenumber. In order to have
finite energy, we demand that 2�

R
A(k)k 3 dk < 1. Suppose

A(k) � k q as k ! 0 and therefore that the integrand behaves as
�k 3þq as k ! 0. For integrability, we need to have q > �4.
Developing a power series about k ¼ 0 in integer powers of
k, we express A as A(k) � a�3 /k

3 þ a�2 /k
2 þ a�1 /k þ a0 þ

a1k þ : : : . However, for homogeneous turbulence, Rii(r) ¼
Rii(�r) to ensure translational symmetry. By equation (3), Sii is
even in k, and therefore A(k) ¼ Sii(k)/k

2 is also an even func-
tion of k and its components. Consequently, a�3 and a�1 must
vanish. The first term that can appear is a�2, and if a�2 6¼ 0 then
hb2i is finite, but ha2i diverges. This is the case of an infinite
ultrascale. The requirements imposed so far, finite energy and
evenness in k, therefore imply that S(k)¼ k 2A(k)¼ a�2þa0 k

2 þ
a2k

4 þ : : : for small k in axisymmetric 2D turbulence.

5. REQUIREMENTS OF HOMOGENEITY
AND SOLENOIDALITY

Following the classical treatment of homogeneous 3D hydro-
dynamic turbulence, we assume that the second-order moments
(spectra and correlation functions) are homogeneous and ana-
lytic as k ! 0. This is related to, but somewhat stricter than, the
expansion in the previous subsection.

The behavior of the spectral tensor near k ¼ 0 can then be
expressed as

Sij(k) ¼ aij þ bijlkl þ cijlmklkm þ dijlmnklkmkn þ : : : : ð18Þ

The hydrodynamic property of incompressibility corresponds to
the solenoidal property of the primitive field b, namely: = b ¼ 0.
We therefore demand that kiSij(k) ¼ 0 ¼ kjSij(k), for all k, which
implies that aij ¼ 0. Furthermore, the spectrum is positive defi-
nite in the sense that the diagonal elements in principal axis co-
ordinates are energies �0. Consequently, the spectral tensor is
a positive definite quadratic form (by Cramer’s theorem) and
k�i Sij(k)kj � 0 for an arbitrary complex vector kj (Batchelor 1970).
If this is to hold at very small k, one requires k�i kjklbijl � 0. But
this must hold for all k, and in particular this quantity reverses
sign when k ! �k. Therefore, bijl ¼ 0. Furthermore, homo-
geneity implies that Rij(r) ¼ Rji(�r), and so the spectrum must
satisfy Sij(k) ¼ Sji(�k). Thus the diagonal elements must be
even functions of the components of k. Consequently,

Sxx(k) ¼ C11lmklkm þ O(k 4);

Syy(k) ¼ C22lmklkm þ O(k 4): ð19Þ

This implies, from equation (2), that the leading order behavior
of the energy spectrum near the origin is given by

S(k) ¼ Ck 2 þ O(k 4) as k ! 0: ð20Þ

This corresponds to a vector potential that behaves as A(k) � C þ
Dk 2 þ O(k 4) as k ! 0.

6. SOME TYPES OF 2D FLUCTUATIONS

6.1. Reference Case: Typical Slab Case

A familiar situation is one-dimensional slab turbulence with
a fluctuation b perpendicular to a uniform DC mean field B0

and varying only in that direction. The total magnetic field is
B(z) ¼ (bx(z); by(z);B0). If the two point correlation R(r) ¼
b(0) = b(r)h i vanishes asymptotically beyond a certain spatial
lag ks, then the spectrum (Fourier transform of the two point cor-
relation) for wavenumbers k < 1/ks must approach a constant,
nonzero value. This reasoning leads to canonical forms for the
slab power spectrum, such as,

S(k � 1=ks) ¼ C b2
� �

ks;

S(k > 1=ks) ¼ C b2
� �

ks(kks)
��; ð21Þ

where C is a normalization constant, and ks is the slab bendover
scale. The power-law index � at higher wavenumbers is frequently
set to 5/3, corresponding to the Kolmogorov spectrum for turbu-
lent fluctuations in the inertial range. The spectrum has the prop-
erty that 2

R 1
0

dk S(k) ¼ b2
� �

, from which one determines that
C ¼ 1/5. One can readily show for this spectrum that the corre-
lation scale is

k cs ¼
R 1
0

dr R(r)

R(0)
¼ �

5
ks: ð22Þ

6.2. Analogous 2D Spectrum

The above slab spectrum, with dimensionality equal to the
magnetic field squared times the length, has the property that its
integral over wavenumber gives the total energy. By analogy,
one might adopt a similar form for E, the 2D omnidirectional
spectrum, for which

R
E(k) dk ¼ b2

� �
. Therefore, one might
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consider models in which the 2D omnidirectional spectrum is
of the form

E(k) ¼ 2�kS(k) ¼ C b2
� �

k2 (for k � 1=k2)

¼ C b2
� �

k2(kk2)
�� (for k > 1=k2); ð23Þ

where C is a normalization constant, and k2, the 2D bendover
scale, can be related to the 2D correlation scale. Here, it is under-
stood that k is a 2D wavevector, and the inertial range index is
usually � ¼ 5/3. We require � > 1 for a finite total fluctuation en-
ergy. This spectrum is similar in its asymptotic behavior to what
has been used in a number of earlier studies (Qin et al. 2002; Zank
et al. 2004; Bieber et al. 1994). [Note that these earlier studies have
typically used smooth spectra of the form S(k)¼ C 0 b2

� �
k�1(1þ

k 2k2)��=2 for C 0 a normalizing constant.] By comparison with
the results of the last two subsections, or directly by integration
and using equations (9) and (10), one can show that this spectrum
gives rise to an integrable energy, a divergent correlation scale,
and an infinite ultrascale.

6.3. Other 2D Spectral Forms with One Scale Length

An axisymmetric turbulent fluctuation (modal) spectrum with
an arbitrary power-law behavior near k ¼ 0 can be written as

S(k) ¼ C b2
� �

k2
2 (kk2)

p (for k � 1=k2)

¼ C b2
� �

k2
2 (kk2)

���1 (for k > 1=k2); ð24Þ

where C is a dimensionless constant determined by normaliza-
tion. We examine integral values of p, with reference to the power
series discussed in xx 4 and 5. Note that this spectral form still
involves only one scale length, k2.

Anticipating some divergences as k ! 0, it is convenient to
introduce a long-wavelength cutoff at a minimum wavenumber
k0 ¼ 1/L. The length L corresponds to a system size, or ‘‘box
size,’’ at which homogeneity might break down. In the theory
of field line random walks, there is an analogous cutoff at small
wavenumbers. In that case, L corresponds to the rms fluctuation
distance of the random walk over the length of interest, and it
appears in a function that tends to zero (only) for kP k0 ¼ 1/L,
which for finite L, eliminates any divergences as k ! 0 (Ruffolo
et al. 2004). In either case, the limit L ! 1 needs to be examined
to approach infinite extent and exact homogeneous symmetry or
to understand whether the correlation scale and ultrascale exist
according to their usual definitions. Alternatively, one might com-
pute the integrals using a large scale cutoff L and speak of the
cutoff dependence of kc and k̃.

The case p ¼ �1 is considered above, in equation (23), and
corresponds to a divergent correlation scale kc2 � k2 log (L/k2)
for a large box of size L. For that case, the ultrascale diverges as
k̃ � k2Lð Þ1=2. For p ¼ 0, the modal spectrum S(k) is flat at the
origin, and E(k) � k. The normalization constant C can be de-
termined by direct integration to evaluate b2

� �
, yielding C ¼

(1/�)(� � 1)/(� þ 1) for p ¼ 0. Now one finds a finite correla-
tion scale kc2 ¼ (2� 2/�)k2. However, the ultrascale requires
that we examine the integral

k̃2 b2
� �

¼ 2�

Z 1

1=L

dk
S(k)

k

¼ 2�

Z 1=k2

1=L

dk
(C b2

� �
k2
2 )

k
þ 2�

Z 1

1=k2

dk
S(k)

k

� k2
2 log (L=k2) (for p ¼ 0); ð25Þ

which diverges as L ! 1. Again, the ultrascale integral is not
sensitive to the spectral form in the inertial range.
At the level of p ¼ 1, one recovers for the first time a case

where both the correlation scale and ultrascale are finite as the
box size approaches infinity. However, this case would be ruled
out for a strict application of homogeneity, as discussed above.
The case p ¼ 2 is consistent with asymptotic homogeneity and
gives the first result in this sequence that is consistent with those
formal requirements. It also gives finite kc2 and finite k̃, as do all
higher values of the power-law index p. Given that k2 is the only
scale length in the parameterized power spectrum (eq. [24]), it is
not surprising that when they are finite, both length scales are of
order k2 (see Table 1).

6.4. 2D Spectral Forms with Two Scale Lengths

Now let us consider an axisymmetric modal spectrum S(k)
that is continuous over three wavenumber ranges defined in
terms of two length scales:

S(k) ¼
Ckk2 b2

� �
(kk) p (for k � 1=k);

Ckk2 b2
� �

(kk)�1 (for 1=k < k � 1=k2);

Ck2
2 b2
� �

(kk2)
���1 (for 1=k2 < k);

8><
>: ð26Þ

as illustrated in Figure 1. Now S(k) is a power law with index p
at low wavenumbers up to 1/k, and there is a régime where
the omnidirectional energy spectrum E(k) ¼ 2�kS(k) is constant
over 1/k < k � 1/k2, i.e., for scale sizes between the usual 2D
bendover scale k2 and the larger scale k. Then the steeper spec-
trum at highwavenumbers k > 1/k2 may be used to represent the
inertial scale of turbulent fluctuations. Note that this spectrum
has the same form as equation (24) at both low and high wave-
numbers and tends to equation (24) as k ! k2.
There is some physical motivation for the spectral form of

equation (26). Observations of magnetic fluctuations in the solar
wind indicate an omnidirectional energy spectrum with � 	 5/3
in the inertial range (at kk 1/k2; Jokipii & Coleman 1968) and
approaches a flattening (Hedgecock 1975) or a k�1 dependence
in the energy-containing range (at kP 1/k2; Bieber et al. 1993).
At the same time, the solenoidal property and homogeneity re-
quire S(k) to increase with k at lowwavenumbers (see x 5), hence
the need for a second break scale k, which marks the onset of
long-wavelength (low-wavenumber) behavior. The omnidirectional
energy spectrum E(k), power spectrum S(k), and reduced spectra
are shown in Figure 1, for p ¼ �1, 0, 2, and 4, normalized by
C b2
� �

¼ 1 and setting � ¼ �5/3, k2 ¼ 1, and k ¼ 100. Note
that p ¼ �1 corresponds to no spectral break at k ¼ 1/k, p ¼ 0 is
an intermediate case, and only the higher values p ¼ 2 and p ¼ 4
are consistent with the solenoidal property and homogeneity.
From the requirement that

b2
� �

¼ 2�

Z 1

0

S(k)k dk; ð27Þ

TABLE 1

Correlation Scale and Ultrascale for Axisymmetric 2D Spectra

with One Length Scale, k2, the 2D Bendover Scale

p Correlation Scale, kc2 Ultrascale, k̃

�1 .................................. �k2 log (L/k2) �
ffiffiffiffiffiffiffiffi
k2L

p

0...................................... �k2 �k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log L/k2ð Þ

p
�1 .................................. �k2 �k2

Note.—S(k) � k p as k ! 0.

MATTHAEUS ET AL.960 Vol. 667



we can determine the normalization constant C:

C ¼ 2� 1þ 1

� � 1

� �
� 2�

k2
k

1� 1

pþ 2

� �� ��1

: ð28Þ

Note that if the two length scales are widely separated, k3k2,
then 2�C is of order unity. Next we can evaluate the correla-
tion scale for a finite long-wavelength cutoff L as in x 6.3. For
p ¼ �1, it diverges logarithmically:

kc2 ¼ 2�Ck2 log (L=k2) (for p ¼ �1); ð29Þ

and for p � 0, we have

kc2 ¼ 2�Ck2 log
k
k2

� �
þ 1

pþ 1
þ 1

�

� �
(for p � 0); ð30Þ

which gives kc2 � k2 log k/k2 for the case k3k2.
Next let us calculate the ultrascale. For p ¼ �1, we obtain

k̃ � (k2L)
1=2, as in x 6.3. However, for p ¼ 0, the form of the

divergence is somewhat different, with k̃ � kk2 log (L/k)½ �1=2.
Finally, with p � 1, we obtain the nondivergent result

k̃2 ¼ 2�C kk2 1þ 1

p

� �
� k2

2 1� 1

� þ 1

� �� �
(for p � 1):

ð31Þ

For k3k2, this tends to k̃ � (kk2)
1=2. Table 2 summarizes our

results for the correlation scale and the ultrascale, which dem-
onstrate that the ultrascale can be distinct from the correlation
scale, with a different dependence on the model parameters.

7. METHOD FOR EVALUATING THE ULTRASCALE
FROM DATA

The ultrascale k̃ defined in equation (12) is an independent
length scale that influences important physics processes, such as
the field line random walk and particle diffusion. Nevertheless,
unlike the correlation scale, we do not have a very good idea of
what values it might take in space and astrophysical plasmas. In
contrast to the correlation scale, we are not aware that methods of
determination of k̃ from observational data have been investigated.
Here we briefly summarize one possible approach and show a
numerical test of the scheme.

We assume that the fluctuations we are measuring are purely
2D, superposed on a uniformmean field, as described in x 2. Iden-
tifying the mean field direction as ẑ, and assuming for conve-
nience that measurements of b(x; y0) are available for many
values of x at some arbitrary choice of the y coordinate, y0, we
proceed to examine the flux integral

f �x; x0ð Þ ¼
Z x0þ� x

x0

dx0 by x0; y0ð Þ ¼ a x0;y0ð Þ� a x0 þ�x; y0ð Þ:
ð32Þ

We square this value and average over many such intervals of
magnetic data, noting that we may freely shift the values of x0
and y0, assuming that the turbulence is spatially homogeneous.
Therefore, if h: : :i denotes this averaging process, we arrive
at a statistical average of the mean square flux integral, which
is

F �xð Þ ¼ f 2 �x; x0ð Þ
� �

¼ a� a0ð Þ2
D E

; ð33Þ

where a� a0 denotes the difference between the values of the
potential function at two positions separated by �x. This is just
the second-order structure function of the potential. We now as-
sume that these potential function values become uncorrelated at
very large separations, so that

lim
� x!1

F(�x) ¼ F1 ¼ 2 a2
� �

: ð34Þ

Under these conditions, we see that

k̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
F1
2 b2h i

s
; ð35Þ

which amounts to a simple prescription that might be used to
compute values of k̃ from magnetic turbulence data. The main
restrictions on this approach appear to be that the sequence of
measured mean-square flux integrals must approach a stable limit
and that the turbulence is homogeneous and quasi-2D over the
requisite scales.

To demonstrate this, we employ synthetic magnetic field data
(as in Matthaeus et al. 1995). The data are generated with a con-
trolled spectrum, with p ¼ 2, and random phases on an evenly
spaced 1024 ; 1024 spatial grid. Furthermore, from direct evalu-
ation of the wavenumber-space definition of k̃ given the known
power spectrum, the ultrascale here has the value 0.11267, com-
pared with a correlation scale set to 0.05 (units such that box side
is 2�). We then proceed to estimate this value from computation
of a series of flux integrals, where we average the values over all
available estimates in the selected data sample for each choice of
�x and then plot the results as �x is varied.

Figure 2 shows the results of this numerical test. Indeed, we
see that this method succeeds in this case, tending to within 10%

TABLE 2

Correlation Scale and Ultrascale for Axisymmetric 2D Spectra

with Two Separated Length Scales

p Correlation Scale, kc2 Ultrascale, k̃

�1 .................................. �k2 log (L/k2) �
ffiffiffiffiffiffiffiffi
k2L

p

0...................................... �k2 log(k/k2) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kk2 log(L/k)

p
�1 .................................. �k2 log(k/k2) �

ffiffiffiffiffiffiffi
kk2

p

Note.—S(k) � k p for k < 1/k, where k3k2.

Fig. 2.—Results of evaluation of the ultrascale k̃ from data extracted from a
1024 ; 1024 2D spectral MHD simulation (solid line). This confirms that at large
�x, the estimate does tend to the exact value of the ultrascale for the known power
spectrum, k̃ ¼ 0:11267 (dashed line). To calculate the flux integrals, samples of
by(x; y0) were taken for 1024 values of x at each of 20 values of y0. Note that the
simulation box size is 2� and the correlation scale is 0.05 for this data set.
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of the exact value of k̃. We propose that this may form the basis
for the estimation of ultrascale values in space and astrophysical
contexts, such as the solar wind, where the flux integrals can be
directly computed from observations at a single spacecraft, as the
plasma passes by, for a range of separations �x in the plasma
frame of reference. It might also be adapted to solar and other
astrophysical settings in which spatially resolved vector mag-
netic field data are available.

8. DISCUSSION AND CONCLUSIONS

We have presented the formal properties of the power spectra
and physically important length scales in 2D turbulence models.
These can be significant for various applications, since transport
coefficients for particle diffusion (Taylor & McNamara 1971),
turbulent self-diffusion (Salu &Montgomery 1977), and the field
line random walk (Matthaeus et al. 1995) can depend on the
above-described low-wavenumber part of the spectrum in certain
limits. Furthermore, there is evidence in the heliosphere (Bieber
et al. 1994, 1996), Earth’s magnetotail (Montgomery 1987;
Borovsky et al. 1997), and in theoretical work (Shebalin et al.
1983; Higdon 1984; Goldreich & Sridhar 1995) that 2D turbu-
lence, or turbulence that is nearly 2D, can be dominant in many
circumstances, especially when there is a moderate to strong ex-
ternally supported, or very large scale, mean magnetic field. The
present work could be extended to numerically study the antic-
ipated effects on field line and particle transport perpendicular to
a mean magnetic field, as low-wavenumber spectral properties
are varied.

The results of calculating the correlation length and ultrascale
for a varying power-law index p near the origin are summarized
in Table 1, for example spectra with a single length scale, and in
Table 2, for spectra with two length scales. The computed energy
is finite in all cases listed in the tables, but would be infinite for
integral values of p < �1. For p ¼ �1 and a box size L, the ultra-
scale diverges as

ffiffiffi
L

p
, while the correlation scale diverges weakly

as log L. For p ¼ 0, the ultrascale is weakly divergent, but the
correlation scale is finite and of the order of the bendover scale
k2. For p ¼ 1 or greater, both scales are finite. These three distinct
possibilities may all be realizable, since all have finite energy. For
the spectra with two length scales, the correlation scale and ultra-
scale are shown to have distinct dependences on those scales and
thus must be considered to be independent of one another.

The present paper hints at several additional issues that will re-
quire future study. For example, the formal properties described
here can be employed to re-examine standard spectrum models
(Bieber et al. 1994; Zank et al. 2004) and possibly to develop and
test variations of these. This leads naturally to the desirability of
understanding better what observationsmight have to tell us about
the low-wavenumber spectrum and the ultrascale. Extrapolating
from the present purely theoretical perspective, one might sup-
pose that two alternatives exist in real astrophysical applications:
one would be that the ultrascale exists and is finite, which would
place constraints on the low-wavenumber spectra, as we have
shown above. The second would be that the spectrum does not
admit the behavior needed for a well-defined ultrascale. In such
cases it is likely that the macroscopic system size introduces a
cutoff that acts in place of the ultrascale with regard to physical
issues, such as diffusion. The impact of long-wavelength cutoffs
is summarized in Tables 1 and 2. The remaining possibility, that
of statistical homogeneity at all scales in an unbounded domain,
andwith infinite ultrascale, appears to be amathematical, and not
a realistic physical, option.
Furthermore, with regard to connection to real systems, we

have presented a technique for determining the ultrascale from
observations at a single point as the plasma flows by, demonstrat-
ing its accuracy for synthetic data. The implementation of this
method to compute the ultrascale from observed magnetic field
data would also be valuable. However, we anticipate that the dif-
ficulties that usually plague determination of very lowwavenumber
(or low frequency) spectra will complicate this procedure as well.
For example, proper determination of the mean vector magnetic
field is anticipated to be an issue, due to very low frequency sig-
nals. Furthermore, the methodology will need to determine the
presence of additional components beyond the pure 2D ingre-
dient that has been the present emphasis. Finally, since all of the
above results are for strictly 2D models, an examination of the
generalization of these properties to anisotropic three-dimensional
models is suggested.
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