Transport and Acceleration of Solar Energetic Particles from Coronal Mass Ejection Shocks

David Ruffolo
Dept. of Physics, Faculty of Science, Mahidol Univ., Bangkok 10400 THAILAND
Outline

1. Overview
2. SEP Transport
3. SEP Acceleration
Overview of observations [Bryant et al. 1962]

[Graphs showing particle counts over time for different energy levels.]
<table>
<thead>
<tr>
<th>Solar energetic particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulsive flares</td>
</tr>
<tr>
<td>CME shocks (gradual events)</td>
</tr>
<tr>
<td>near Sun</td>
</tr>
<tr>
<td>interplanetary</td>
</tr>
</tbody>
</table>

- 3He enhanced, electron-rich, high ion Q
- Up to high E, dispersive onset
- At low E, non-dispersive peak
- (stochastic acceleration) (shock acceleration)
Solar energetic particles

- Impulsive flares
- CME shocks (gradual events)
- near Sun
- interplanetary

- 3He enhanced, electron-rich high ion Q
- Up to high E, dispersive onset
- At low E, non-dispersive peak

Precision modeling \rightarrow Transport \rightarrow Injection

(stochastic acceleration) (shock acceleration)

\[
\frac{\partial F(t, \mu, z, p)}{\partial t} = -\frac{\partial}{\partial z} \mu v F(t, \mu, z, p) \quad \text{(streaming)}
\]

\[- \frac{\partial}{\partial z} \left(1 - \mu^2 \frac{v^2}{c^2}\right) v_{sw} \sec \psi F(t, \mu, z, p) \quad \text{(convection)}
\]

\[- \frac{\partial v}{\partial \mu} \frac{v}{2L(z)} \left[1 + \mu \frac{v_{sw}}{v} \sec \psi - \mu \frac{v_{sw} v}{c^2} \sec \psi \right] \cdot (1 - \mu^2) F(t, \mu, z, p) \quad \text{(focusing)}
\]

\[+ \frac{\partial}{\partial \mu} v_{sw} \left(\cos \psi \frac{d}{dt} \sec \psi\right) \mu (1 - \mu^2) \cdot F(t, \mu, z, p) \quad \text{(differential convection)}
\]

\[+ \frac{\partial \varphi(\mu)}{\partial \mu} \frac{\partial}{\partial \mu} F(t, \mu, z, p) \quad \text{(scattering)}
\]

\[+ \frac{\partial}{\partial p} p v_{sw} \left[\sec \psi \frac{d}{dt} (1 - \mu^2) + \cos \psi \frac{d}{dt} \sec \psi \mu^2 \right] \cdot F(t, \mu, z, p). \quad \text{(deceleration)}
\]
Simulation of interplanetary transport

- Specify magnetic field configuration
- Solve PDE
- Runs in a few minutes [Nutaro et al., Comp. Phys. Comm. ‘01]

Fitting SEP data

- Simultaneous fit to intensity vs. time
 anisotropy vs. time
- Optimal piecewise linear injection (least squares)
- Optimal scattering mean free path, \(\lambda \)

[DR, Khumlumlert, & Youngdee, JGR ‘98]
Easter 2001

- Ground Level Enhancement (GLE)
- Observed by neutron monitors (high statistics, precise directionality)
- We can accurately fit the intensity & anisotropy
- Precise timing results (will show shortly)

GLE of Bastille Day 2000: Initial Fit ...

- **intensity (ความหนาแน่นอนุภาค)**
 - เวลา vs. ความหนาแน่นอนุภาค

- **anisotropy (อัตราไหลออก – อัตราไหลเข้า)**
 - เวลา vs. อัตราไหลเข้า-ออก
Magnetic bottleneck in space
Thus we have convincing evidence for interplanetary magnetic mirroring of energetic particles.

Closed magnetic loop?

Help! We’ve been swallowed by a magnetic cloud!
Oct. 28, 2003

- Solar neutrons: from interacting SEP
- Mysterious fast peak
- Slow decay implies loop geometry
- Timing of main peak of escaping SEP: onset at soft X-ray maximum (like Easter 2001)

[Bieber et al., sub. to GRL]
Comparison with EM timing

<table>
<thead>
<tr>
<th>EMISSION</th>
<th>APR. 15, 2001</th>
<th>OCT. 28, 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>START</td>
<td>PEAK</td>
</tr>
<tr>
<td>Type III radio burst</td>
<td>13:36</td>
<td>13:38</td>
</tr>
<tr>
<td>CME liftoff*</td>
<td>13:24-31</td>
<td></td>
</tr>
<tr>
<td>Type II radio burst</td>
<td>13:40</td>
<td>13:47</td>
</tr>
<tr>
<td>Type IV radio burst</td>
<td>13:44</td>
<td>14:57</td>
</tr>
</tbody>
</table>

* Linear - quadratic fits ** Sudden onset of intense emission

All times are “Solar Time” or UT minus 8 min. for EM emissions
How accurate is the injection timing derived from linear fits to onsets?

\[t_{\text{onset}} = \frac{\text{path}}{v} + t_0 \]

[Sáiz, Evenson, & DR, in preparation]
There is some spread in the injection start times and pathlengths derived from straight-line fits, depending on the mean free path and duration of injection:

- Injection timing: several minutes
- Pathlength: ~ 50 %
<table>
<thead>
<tr>
<th>Solar energetic particles</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulsive flares</td>
<td>CME shocks (gradual events) near Sun interplanetary</td>
</tr>
<tr>
<td>³He enhanced, electron-rich high ion Q</td>
<td>Up to high E, dispersive onset At low E, non-dispersive peak</td>
</tr>
</tbody>
</table>

Difficult to separate acceleration & transport
Saturation, composition changes [Ng et al. ’99]
Seed population, local accelerated spectrum (stochastic acceleration)
Transport parallel or perpendicular to the mean magnetic field

Turbulent magnetic field deviates from mean field

field line random walk

Δx vs. z
Perpendicular transport: Recent ideas

- Dynamical turbulence [Bieber & Matthaeus 1997]
- MC simulations [Giacalone & Jokipii 1999]
- Second diffusion: Nonlinear guiding center theory [Qin et al. 2003]
- Trapping by topology of turbulence [DR, Matthaeus, & Chuychai 2003]
“halo” of low SEP density over wide lateral region

“core” of SEP with dropouts

[DR, Matthaeus, & Chuychai 2003]
Acceleration of particles by shocks
Following collision with a scattering center: lose energy
Head-on collision with a scattering center: gain energy
Since $u_1 > u_2$ there is a net gain in energy
Solar wind & IP shock abundances

Mass/Charge (AMU e⁻¹)

Upstream & IP shock abundances

Mass/Charge (AMU e⁻¹)

Spectra and abundances for Sep. 7 2002 IP shock

Why do the spectra roll over at ~ 0.1 - 10 MeV/n?
(data - see also: Gosling et al. 1981; van Nes et al. 1985)

Possible mechanisms suggested by Ellison & Ramaty (1985)

- shock thickness $\sim \kappa/u \rightarrow$ energy is too low
- drift over shock width \rightarrow rollover at ~ 100 MeV/Q
- finite time for shock acceleration \rightarrow considered here

(see also: Klecker et al. 1981; Lee 1983)
Finite-Time Shock Acceleration

- Probability approach (like Bell 1978, Drury 1983)
- Acceleration rate, \(r = \frac{1}{t_{\text{acc}}} \)
- Escape rate, \(\varepsilon \)
- Time at present (age of shock), \(t \)
- No. of acceleration events, \(n \)
- \(r, \varepsilon \) constant w/ energy - combinatorial model
- \(r, \varepsilon \) varying - ODE (analytic, numerical)
- Acceleration at interplanetary shocks
Rollover energy \((E_c / A)\)
(well above injection energy)

\[\lambda = \text{const.} \]
\[E_c / A \propto t^2, \text{ independent of } Q/A \]

\[\lambda \propto P^\alpha \]
\[E_c / A \propto t^{2/(\alpha+1)} \left(Q/A \right)^{2\alpha/(\alpha+1)} \]
We welcome foreign students!