
RANDOM WALK OF MAGNETIC FIELD LINES IN NONAXISYMMETRIC TURBULENCE

D. Ruffolo,
1
P. Chuychai,

1,2,3
and W. H. Matthaeus

3

Received 2005 December 23; accepted 2006 February 22

ABSTRACT

The random walk of turbulent magnetic field lines strongly affects transport of energetic particles in astrophysical
plasmas, but is not well understood for general configurations that lack rotational symmetry. Here we derive
nonperturbative field-line diffusion coefficients for magnetic fluctuations that are nonaxisymmetric with respect to
the mean magnetic field. We consider a superposition of slab plus two-dimensional fluctuations, a model that has
proven useful in heliospheric studies. Two independent parameters are introduced to allow polarization of the slab
component and stretching of the two-dimensional component. With the assumptions of homogeneity, the diffusion
approximation, and Corrsin’s independence hypothesis, we derive two coupled biquadratic equations for the dif-
fusion coefficients. The results and underlying assumptions are confirmed by numerical simulations. Special cases of
interest include the counterintuitive results that enhanced fluctuations in one direction lead to decreased diffusion in
the other direction, and that extreme nonaxisymmetry leads to diffusion coefficients proportional to the rms two-
dimensional fluctuation.

Subject headinggs: diffusion — magnetic fields — turbulence

1. INTRODUCTION

Turbulent motions, nearly universal in tenuous astrophysical
plasmas, lead to magnetic turbulence and the random walk of
magnetic field lines. The field lines define the magnetic topology
and play an important physical role by guiding the motion of
charged particles. The classic work of Jokipii (1966) and Jokipii
& Parker (1968) expressed a relationship between the random
walk offield lines in magnetic turbulence and the diffusion of en-
ergetic charged particles perpendicular to the mean magnetic field
in astrophysical plasmas, for the case of weak fluctuations, often
described as the quasi-linear (QLT) limit.

Recent work on the field-line random walk has stressed the
importance of large amplitude fluctuations, as well as the gener-
ally anisotropic character of magnetohydrodynamic (MHD) tur-
bulence (Isichenko 1991a, 1991b; Wang et al. 1995; Matthaeus
et al. 1995; Pommois et al. 1999). This involves not only extend-
ing the analytical methods beyond the QLT approach, but also
appropriately representingmore complex three-dimensional mag-
netic turbulence properties. In particular, a two-component ‘‘2D+
slab’’ model adds slab and two-dimensional turbulence to provide
a useful model of solar wind fluctuations (Matthaeus et al. 1990;
Bieber et al. 1996). This model of anisotropic turbulence is suf-
ficiently simple to allow analytic calculations of ensemble average
properties while still including a rich variety of local topological
effects (Ruffolo et al. 2003; Chuychai et al. 2005). The anisotropy
is strong in the low-latitude solar wind, with a roughly 80 : 20 ratio
of two-dimensional to slab turbulent energy (Bieber et al. 1994,
1996), and is even stronger in magnetic clouds (Leamon et al.
1998) and rarefaction regions in the solar wind (Smith et al. 2001,
2004). Recent results suggest that the fast wind has a lower two-
dimensional admixture, with perhaps a 50 : 50 ratio of energies
(Dasso et al. 2005). The anisotropic nature of solar wind turbu-
lence has been shown to have interesting physical effects. Bieber

et al. (1994) showed that this anisotropy may resolve the long-
standing discrepancy between theoretical and observed mean free
paths of solar energetic particles. Matthaeus et al. (1995) derived
analytic formulae for the field-line randomwalk in two-component
turbulence—later confirmed by computer simulations (Gray et al.
1996)—that indicates diffusion tending as b2/B2

0 for slab turbu-
lence (Jokipii & Parker 1968) but as b/B0 for the two-dimensional
component. Note, however, that many of the classic concepts of
transport phenomena in turbulent media are based on implicit as-
sumptions of nearly isotropic turbulence. Ruffolo et al. (2004)
showed that in two-component turbulence, the separation of mag-
netic field lines only develops an exponential form (Rechester &
Rosenbluth 1978) when the slab component dominates the field-
line random walk, and the Kubo number that classically defines
quasi-linear versus percolative behavior (e.g., Isichenko 1991a,
1991b) needs to be modified for strongly anisotropic turbulence.

Understanding has greatly improved by considering the ani-
sotropy of magnetic turbulence; however, most of this work has
continued to assume axisymmetry, with some notable exceptions
(e.g., Pommois et al. 1999, 2001). Axisymmetry about the z-axis
(usually the coordinate along the mean field) implies that sta-
tistical properties of the turbulent field are rotationally symmet-
ric in the perpendicular coordinates x and y. However, there are
indications that the variances of magnetic fluctuations may be
nonaxisymmetric in some cases of interest. The classic work of
Belcher & Davis (1971) indicated a roughly 4 : 3 ratio in solar
wind fluctuation energy in the ẑ ; r̂ direction relative to the or-
thogonal direction (see Table 6 of Belcher & Davis 1971) along
theMariner 5Venus flyby trajectory. Recent studies also suggest
a possible role of nonaxisymmetric fluctuations in enhanced lat-
itudinal transport of cosmic rays at high heliographic latitudes
(Jokipii et al. 1995; Burger & Hattingh 1998). Note that the
Archimedean spiral magnetic field (Parker 1958) in the outer he-
liosphere is mainly in the azimuthal direction, so the two perpen-
dicular coordinates are r and �. However, the mean solar wind
flow is essentially radial with a small deceleration, so the so-
lar wind plasma is greatly stretched in � with a slight compres-
sion in r. Furthermore, there are various intermittent structures
that can interrupt coherence in the r-direction, such as corotat-
ing interaction regions, coronal mass ejections, shocks, and the
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heliospheric current sheet. Because these effects can lead to both
different energies and different correlation scales in the two com-
ponents of turbulence (two-dimensional and slab) and in the two
directions perpendicular to the mean magnetic field, one might
expect substantial nonaxisymmetry of magnetic turbulence in
the outer heliosphere (Jokipii 1973), even if there is some trans-
fer of energy between the two perpendicular directions due to
dynamical couplings. For these reasons there is ample motiva-
tion to extend our understanding of axisymmetric turbulence to
the more general case of nonaxisymmetry.

In this work we develop a theory for the nonaxisymmetric
field-line random walk in a general nonperturbative scheme
(Matthaeus et al. 1995). This approach is useful for transverse
fluctuations in general, and is explicitly applied here to non-
axisymmetric two-component turbulence. The nonaxisymmetry
includes both polarization of the slab component and stretching
of the two-dimensional component in wavenumber space. Our
principal result is a set of coupled biquadratic equations in the
diffusion coefficients Dx and Dy. Computer simulations are also
performed, which verify the analytic solutions and justify the un-
derlying assumptions. An interesting finding is that increased
fluctuations in one direction can inhibit the field-line random
walk in the other direction. It is also found that the limit of ex-
treme nonaxisymmetry leads to a first-order dependence of the
field-line random walk on b/B0. We derive closed-form solu-
tions for several limiting cases, which should find immediate ap-
plication in heliospheric scattering problems such as cosmic-ray
modulation.

2. ANALYTIC THEORY

The present work considers statistically homogeneous, non-
axisymmetric two-component magnetic turbulence. In the two-
component model, we assume

B ¼ B0 þ b(x; y; z); ð1Þ

where the mean field B0 is constant. We also use

B0 ¼ B0ẑ; b ? ẑ; ð2Þ

and the fluctuating field, of mean zero, is given by

b ¼ b2D(x; y)þ bslab(z): ð3Þ

For brevity, we refer to a quantity such as hb2i as the magnetic
energy of the fluctuations, E, and define b � hb2i1/2. In general,
we can write

b2D(x; y) ¼ :< ½a(x; y)ẑ�: ð4Þ

The potential function a(x; y) can be taken to be a random func-
tion fluctuating about a constant mean value, taken to be zero for
convenience, with a well-behaved power spectrum A(kx; ky)
(Ruffolo et al. 2004).

In the absence of a slab component, the field lines for two-
dimensional turbulence would move along curves of constant a,
since equation (4) indicates that b2D ? 9a. In three dimensions,
such field lines are constrained to flux tubes that are ‘‘cylinders’’
in the mathematical sense of surfaces of constant a(x; y). This
can account for the repeated dropouts in observations of solar en-
ergetic particles from impulsive solar flares (Mazur et al. 2000;
Ruffolo et al. 2003). A key feature that makes the two-component
model of turbulence realistic and interesting is that the slab com-

ponent imposes random perturbations on the field-line motion,
leading to mixing of field lines and wandering to regions of dif-
ferent a(x; y) (see also Matthaeus et al. 1995).
Note that Bz � B0, so in this model it is impossible for a

magnetic field line to backtrack in the z-direction, and the
z-coordinate specifies a unique location along a magnetic field
line. Therefore, we follow the standard practice of defining the
field-line diffusion coefficient in terms of the distance �z:

Dx ¼
�xð Þ2

D E
2�z

Dy ¼
�yð Þ2

D E
2�z

: ð5Þ

For nonaxisymmetric turbulence, we note that h(�x) 2i 6¼
h(�y) 2i. To obtain a nonaxisymmetric slab field, we can explic-
itly set the parallel correlation length, lc, and rms slab magnitude,
bslab � (hb2islab)1/2, to be different in the x- and y-directions. For
two-dimensional turbulence, the power spectrum A(kx; ky) for the
axisymmetric case depends only on k? ¼ (k 2

x þ k 2
y )

1/2; i.e., it is
constant along circles in (kx; ky) space. To consider nonaxisym-
metric two-dimensional turbulence, we use a form that is instead
constant along ellipses in (kx; ky) space (Fig. 1). Note that our
model incorporates the two keyways to violate axisymmetry: (1) a
difference between the two ‘‘polarizations’’ (for the slab compo-
nent), and (2) a difference between correlation scales in different
directions (for the two-dimensional component).
Our analytic derivation of Dx andDy follows those of Matthaeus

et al. (1995) and Ruffolo et al. (2004) in assuming Corrsin’s in-
dependence hypothesis (Corrsin 1959; Salu&Montgomery 1977;
see also McComb 1990), Gaussian random walk distributions,
and diffusive behavior. Computer simulations have been used to
verify the validity of these assumptions for the field-line random
walk (Gray et al. 1996) and field-line separation (Ruffolo et al.
2004) in two-component turbulence.
Following Jokipii & Parker (1969), we express the change in

the x- and y-coordinates of a field line over a distance �z along
the mean magnetic field as

�x � x �zð Þ � x(0) ¼ 1

B0

Z � z

0

bx x z 0ð Þ; y z 0ð Þ; z 0½ � dz0

�y � y �zð Þ � y(0) ¼ 1

B0

Z � z

0

by x z 0ð Þ; y z 0ð Þ; z 0½ � dz 0: ð6Þ

The ensemble average of (�x) 2 is then given by

�x2
� �

¼ 1

B2
0

Z � z

0

Z � z

0

bx x z0ð Þ; y z0ð Þ; z0½ �bx½x z00ð Þ; y z00ð Þ; z00�h idz0dz00

¼ 1

B2
0

Z � z

0

Z � z

0

bx x0; y0; z0ð Þbx x00; y00; z00ð Þh i dz0 dz00;

ð7Þ

where we introduce the notation x0 for x(z0), etc. We can also
write

�x2
� �

¼ 1

B2
0

Z � z

0

Z � z�z 0

�z 0
bx x0; y0; z0ð Þbx x00; y00; z0þ�z0ð Þh id�z0dz0;

ð8Þ
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where�z0 � z00 � z0, and with the assumption of homogeneity,

�x2
� �

¼ 1

B2
0

Z � z

0

Z � z�z 0

�z 0
bx(0; 0; 0)bx �x0; �y0; �z0ð Þh i d�z0 dz0;

ð9Þ

where �x0 � x00 � x0 and �y0 � y00 � y0. By changing bx to by
we can obtain a similar formula for h�y2i.

Here we use Corrsin’s hypothesis in position space and con-
sider the Lagrangian correlation function hbx(x0; y0; z0)bx(x00;
y00; z00)i to be the Eulerian correlation function, Rxx � hbx(0; 0;
0)bx(x; y; z)i, weighted by the conditional probability of finding
(�x0;�y0) after a given �z0:

�x2
� �

¼ 1

B2
0

Z � z

0

Z � z�z 0

�z 0

Z 1

�1

Z 1

�1
Rxx �x0;�y0;�z0ð Þ

; P �x0j�z0ð ÞP �y0j�z0ð Þ d�x0 d�y0 d�z0 dz0:

ð10Þ

The formula for h�y2i is similar:

�y2
� �

¼ 1

B2
0

Z � z

0

Z � z�z 0

�z 0

Z 1

�1

Z 1

�1
Ryy �x0;�y0;�z0ð Þ

; P �x0j�z0ð ÞP �y0j�z0ð Þ d�x0 d�y0 d�z0 dz0:

ð11Þ

We assume the probabilities in equations (10) and (11) to be
Gaussian distributions as

P �x0j�z0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2��2

x

p exp � �x0ð Þ2

2�2
x

" #

P �y0j�z0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2��2

y

q exp � �y0ð Þ2

2�2
y

" #
; ð12Þ

where �2
x and �2

y are the variances in x- and y-components. We
apply the diffusion approximation for the variances, which are

�2
x ¼ �x0ð Þ2

D E
¼ 2Dx �z0j j

�2
y ¼ �y0ð Þ2

D E
¼ 2Dy �z0j j: ð13Þ

Thus, equations (12) become

P �x0j�z0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�Dxj�z0j

p exp � �x0ð Þ2

4Dxj�z0j

" #

P �y0j�z0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�Dyj�z0j

p exp � �y0ð Þ2

4Dyj�z0j

" #
: ð14Þ

Next we integrate equations (10) and (11) over �z0 and z0 and
introduce the power spectra Pxx and Pyy as the Fourier trans-
forms of the correlation functions Rxx and Ryy, respectively.
Again using the diffusion approximation, we set h�x2i ¼
2Dx�z and h�y2i ¼ 2Dy�z. Finally, we obtain the coupled
equations for Dx and Dy as

Dx ¼
�x2
� �
2�z

¼ 1ffiffiffiffiffiffi
2�

p 1

B2
0

Z 1

�1

1� cos kz�zð Þ
k 2
z �z

P slab
xx kzð Þ dkz

þ 1

2�

1

B2
0

Z 1

�1

Z 1

�1

P 2D
xx (kx; ky)

(Dx k 2
x þ Dy k 2

y )

; 1� g Dx k
2
x þ Dy k

2
y

� �
�z

h in o
dkx dky;

Dy ¼
�y2
� �
2�z

¼ 1ffiffiffiffiffiffi
2�

p 1

B2
0

Z 1

�1

1� cos kz�zð Þ
k 2
z �z

P slab
yy kzð Þ dkz

þ 1

2�

1

B2
0

Z 1

�1

Z 1

�1

P 2D
yy (kx; ky)

Dx k 2
x þ Dy k 2

y

� �
; 1� g Dx k

2
x þ Dy k

2
y

� �
�z

h in o
dkx dky; ð15Þ

Fig. 1.—Contours of constant power A(kx; ky) of the two-dimensional potential function for the axisymmetric model and for our nonaxisymmetric model. To
maintain the same turbulent energy, we can set � ¼ 1/�1/2 and � ¼ �1/2, where � is an ellipticity parameter.
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where g(u) � (1� e�u)/u behaves as a low-pass filter; i.e.,
g(u) � 1 for uT1 and monotonically declines to zero as
u ! 1.

Following Ruffolo et al. (2004), when we choose a large�z,
equations (15) become

Dx � D slab
x ¼ 1

2�

1

B2
0

Z 1

�1

Z 1

�1

P 2D
xx (kx;ky)

(Dx k 2
x þ Dy k 2

y )
dkx dky

Dy � D slab
y ¼ 1

2�

1

B2
0

Z 1

�1

Z 1

�1

P 2D
yy (kx;ky)

(Dx k 2
x þ Dy k 2

y )
dkx dky; ð16Þ

where

D slab
x ¼

ffiffiffiffi
�

2

r
P slab
xx (0)

B2
0

¼ lx fsxb
2

B2
0

ð17Þ

D slab
y ¼

ffiffiffiffi
�

2

r
P slab
yy (0)

B2
0

¼ ly fsyb
2

B2
0

: ð18Þ

Here lx and ly are the correlation lengths in the x- and y-directions,
respectively, fsx is the fraction of turbulent energy that is slab

energy in the x-direction, fsx ¼ hb2
x i

slab
/hb2i, and similarly fsy is

the fraction that is slab energy in the y-direction.
Equations (17) and (18), which correspond to the results of

Jokipii & Parker (1968), make it clear how nonaxisymmetry af-
fects the field-line randomwalk due to the slab component of tur-
bulence. The effect on the two-dimensional component is not as
clear, especially because P 2D

xx (kx;ky) and P
2D
yy (kx;ky) are not in-

dependent functions. From equation (4), which relates b2D(x; y)
to the potential function a(x; y), we infer that P 2D

xx ¼ k 2
y A and

P
2D
yy ¼ k 2

x A, where A(kx;ky) is the power spectrum of a(x;y).
Thus, nonaxisymmetry in the two-dimensional component of
the turbulent magnetic field is generated by nonaxisymmetry in
A(kx;ky).
For the axisymmetric case, A(kx; ky) is constant along circles

of constant k? ¼ (k 2
x þ k 2

y )
1/2 in (kx; ky) space, so A ¼ A(k?).

For the nonaxisymmetric case, we model the two-dimensional
component by taking A(kx; ky) to be constant along ellipses in
(kx; ky) space that have a major to minor axis ratio of �/�
(see Fig. 1). We refer to this ratio as the ellipticity parameter �,
and Figure 2 shows examples of A(x; y) and representations
of the two-dimensional potential function a(x; y) for � ¼ 1

Fig. 2.—Contours of constant power A(kx; ky) for axisymmetric (� ¼ 1, top left) and nonaxisymmetric (� ¼ 4, top right) cases, and contours of corresponding
representations of the potential function a(x; y) (� ¼ 1, bottom left; � ¼ 4, bottom right). Note that the two-dimensional component of magnetic turbulence,
b2D(x; y) ¼ :< ½a(x; y)ẑ�, follows the contours of constant a(x; y).
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(axisymmetric case) and � ¼ 4 (a nonaxisymmetric case). Note
that using � 6¼ 1 stretches the ‘‘islands’’ of constant a(x; y). Now
we write k 0x ¼ kx /�, k 0y ¼ ky /�, and k 0? ¼ (k 02x þ k 02

y
)1/2 ¼

(k 2
x /�

2 þ k 2
y /�

2)1/2 and assume A ¼ A(k 0?). This yields

Dx � D slab
x

¼ 1

2�

1

B2
0

Z 1

�1

Z 1

�1

� 2k 02y A k 0?
� �

Dx�2k 02x þ Dy� 2k 02y

� � d �k 0x
� �

d �k 0y
� �

Dy � D slab
y

¼ 1

2�

1

B2
0

Z 1

�1

Z 1

�1

�2k 02x A k 0?
� �

Dx�2k 02x þ Dy� 2k 02y

� � d �k 0x
� �

d �k 0y
� �

:

ð19Þ

Next, we write equations (19) in polar coordinates k 0? and �
such that k 0x ¼ k 0? cos � and k 0y ¼ k 0? sin �:

Dx � D slab
x ¼

��

2�B2
0

Z 2�

0

Z 1

0

� 2k 02? sin2�A k 0?
� �

Dx�2k 02? cos2�þ Dy� 2k 02? sin2�
� �k 0?dk 0?d�

¼ ��

2�B2
0Dx

� 2

�2

Z 1

0

A k 0?
� �

k 0? dk 0?

;

Z 2�

0

1

cot2�þ (� 2=�2)(Dy=Dx)
d�

Dy � D slab
y ¼

��

2�B2
0

Z 2�

0

Z 1

0

�2k 02? cos2�A k 0?
� �

Dx�2k 02? cos2�þ Dy� 2k 02? sin2�
� � k 0?dk 0?d�

¼ ��

2�B2
0Dx

Z 1

0

A k 0?
� �

k 0? dk 0?

;

Z 2�

0

1

1þ (� 2=�2)(Dy=Dx) tan
2�

d�: ð20Þ

Note that Z 1

0

1= cot2�þ �2
� �� 	

d� ¼ 2�

�(�þ 1)½ � ð21Þ

and Z 1

0

1= 1þ �2 tan2�
� �� 	

d� ¼ 2�

(�þ 1)
; ð22Þ

where � ¼ (�/�)(Dy/Dx)
1/2 in our integrals. Then we obtain

Dx � D slab
x ¼ ��

B2
0

Z 1

0

A k 0?
� �

k 0? dk 0?


 �

;
� 2

�2Dx

1

�=�ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dy=Dx

p
1þ �=�ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dy=Dx

p� 	
Dy � D slab

y ¼ ��

B2
0

Z 1

0

A k 0?
� �

k 0? dk 0?


 �

;
1

Dx

1

1þ �=�ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dy=Dx

p� 	 : ð23Þ

Let us define I to be the term in parentheses:

I ¼ ��

B2
0

Z 1

0

A k 0?
� �

k 0? dk 0?: ð24Þ

Transforming k 0? back to kx and ky,

I ¼ 1

2�B2
0

Z 1

�1

Z 1

�1
A(kx; ky)dkx dky

¼
a2
� �
B2
0

¼ k̃
b2D

B0

� 2

¼ 2 D2D
?

� �2
; ð25Þ

where k̃ is called the ‘‘ultrascale’’ (Matthaeus et al. 1995).
Combining equations (23) and (24), we obtain the coupled bi-
quadratic equations for the field-line random walk in a non-
axisymmetric two-component model of magnetic turbulence:

Dx � D
slab
x

� �
Dy þ

�

�

ffiffiffiffiffiffiffiffiffiffiffi
DxDy

p� 
¼ I

Dy � D slab
y

� �
Dx þ

�

�

ffiffiffiffiffiffiffiffiffiffiffi
DxDy

p� 
¼ I : ð26Þ

In terms of the ellipticity parameter � ¼ �/� we have

Dx � D
slab
x

� �
Dy þ

ffiffiffiffiffiffiffiffiffiffiffi
DxDy

p
�

 !
¼ I

Dy � D slab
y

� �
Dx þ �

ffiffiffiffiffiffiffiffiffiffiffi
DxDy

p� �
¼ I : ð27Þ

These equations are straightforward to solve numerically for a
given case of interest, and in x 3 we derive closed-form solu-
tions for certain limiting cases.

3. INTERPRETATION

To solve the coupled biquadratic equations (27), a ‘‘user’’ of
the calculation needs to specify certain physical inputs:

B0—the mean magnetic field.
b—the rms turbulent magnetic field.
fs—the slab fraction of turbulent energy.
� 2 � fsx /fsy—the slab anisotropy.
lx—the correlation length of b slab

x
.

ly—the correlation length of b slab
y

.

k̃—the ultrascale (of two-dimensional turbulence).
�—the ellipticity parameter.

Actually, instead of providing both b and B0, it is sufficient to
specify only their ratio. The two anisotropy parameters � and �
are quite distinct physically; we show shortly that � is also the
anisotropy of the field-line diffusion coefficients for the two-
dimensional component alone: � 2 ¼ D2D

x /D2D
y . In terms of these

inputs, the quantities in equations (27) are given as

D slab
x ¼ � 2

� 2 þ 1

lx fsb
2

B2
0

ð28Þ

D slab
y ¼ 1

� 2 þ 1

ly fsb
2

B2
0

: ð29Þ

I ¼ 1� fsð Þ k̃
b

B0

� 2

; ð30Þ

and from equation (25) we have I ¼ 2(D2D
? ) 2, so

D2D
? ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� fs

2

r
k̃
b

B0

: ð31Þ
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Note that D slab
x and D slab

y depend on (b/B0)
2, whereas D2D

? /
b/B0 (see also Taylor & McNamara 1971).

Let us stress that the results in x 2 apply for general and in-
dependent functional forms of P slab

xx
(kz), P

slab
yy (kz), and A(k 0?).

For the slab fluctuations, we allow a general polarization in the
sense that x- and y-polarizations have independent power spec-
tra, and we see that the calculation depends only on the product
li fsi, where i ¼ x or y. For the two-dimensional fluctuations, we
take A(kx; ky) to be stretched in one direction relative to the
axisymmetric configuration (Figs. 1 and 2). Thus, the slab an-
isotropy � and ellipticity � represent physically distinct types of
nonaxisymmetry.

In many applications, direct measurements of the physical in-
puts are not available, so one must make educated guesses or
ad hoc approximations. Here we present solutions of the general
equations (27) for specific limits and approximations. Naturally,
the simplest approximation is that either slab or two-dimensional
turbulence can be neglected. For the case where two-dimensional
turbulence is absent, we have fs ¼ 1, I ¼ 0, Dx ¼ D slab

x , and
Dy ¼ D

slab
y , so we recover the Jokipii & Parker (1968) results for

slab turbulence as in equations (28) and (29).
Next, consider the limit at which the slab fraction goes to zero.

It is useful to define the geometric mean of overall diffusion
coefficients, D? � (DxDy)1/2, and an anisotropy of overall dif-
fusion coefficients, 	 � (Dx/Dy)

1/2. Setting D slab
x ¼ D slab

y ¼ 0,
equations (27) give

D2
? 1þ 	

�

� 
¼ I

D2
? 1þ �

	

� 
¼ I ; ð32Þ

which are only satisfied for 	 ¼ �, giving D? ¼ (I /2)1/2 ¼ D2D
?

as in Matthaeus et al. (1995). Therefore,

Dx ¼ 	D? ¼ �D2D
?

Dy ¼
D?

	
¼ D2D

?
�

; ð33Þ

and we can indeed interpret � as the anisotropy of the field-line
randomwalk for two-dimensional turbulence, � ¼ (D2D

x /D 2D
y )1/2.

Now suppose that both the slab and two-dimensional compo-
nents are present. If � and � are not known, a simple approxi-
mation is to set them equal (� ¼ �). Let us also set lx ¼ ly ¼ l,
which along with equations (28) and (29) implies that � ¼
(D slab

x /D slab
y )1/2. Then from an argument similar to that for the

pure two-dimensional case, it can be shown that 	 ¼ � as well.
Therefore, equations (27) decouple to these two equations:

Dx � D
slab
x

� � Dx

� 2

� 
¼ I

2

Dy � D slab
y

� �
� 2Dy

� �
¼ I

2
: ð34Þ

The solutions for this case are

Dx ¼
1

2
D slab

x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(D slab

x ) 2 þ 4 D2D
x

� �2q
 �

Dy ¼
1

2
D slab

y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(D slab

y )2 þ 4 D2D
y

� �2
r" #

; ð35Þ

which is the same as the formula obtained by Matthaeus et al.
(1995) but now applied separately to Dx and Dy quantities. In
terms of the physical inputs, we have

Dx ¼
1

2

� 2

� 2 þ 1

lfsb
2

B2
0

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2

� 2 þ 1

lfsb
2

B2
0

� 2

þ 4� 2 D2D
?ð Þ2

s2
4

3
5

Dy ¼
1

2

1

� 2 þ 1

lfsb
2

B2
0

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

� 2 þ 1

lfsb
2

B2
0

� 2

þ 4
D2D

?
� �2

� 2

s2
4

3
5:

ð36Þ

Now, further suppose that the turbulence is extremely non-
axisymmetric, i.e., that all other input values are fixed but � and
� both tend to 0 or both tend to1. Then, from equations (36) it
can be seen that the two-dimensional contribution dominates.
That is, when � tends to zero,Dx ! �D2D

? andDy ! D 2D
? /�. Sim-

ilarly, as � goes to 1, we again have Dx ! �D2D
? and Dy !

D2D
? /�. Such extreme nonaxisymmetry might occur in the outer

heliosphere iffield fluctuations are ‘‘frozen in’’ the solar wind as it
expands very differently in the two perpendicular directions.
Now let us return to the general case of any possible input

parameters. For convenience in analyzing the coupled equa-
tions (27), we can rewrite all variables to compare with the two-
dimensional values, yielding

D0
? ¼ D?

D2D
?

; Ds0
? ¼ D slab

?
D2D

?
; ð37Þ

	 0 ¼ 	

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx=Dy

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2D

x =D2D
y

q ; ð38Þ

� 0 ¼
�
ffiffiffiffiffiffiffiffiffi
lx=ly

p
�

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D slab

x =D slab
y

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2D

x =D2D
y

q ; ð39Þ

where we define D?, D
2D
? , and D slab

? as the geometric means
(DxDy)

1/2, (D2D
x D 2D

y )1/2, and (D slab
x D slab

y )1/2, respectively. Now
equations (27) become two coupled equations with two un-
known parameters, D0

? and 	 0:

D0
?

1

	 0
þ 1

� 
	 0D0

? � � 0Ds0
?

� �
¼ 2

D0
? 	 0 þ 1ð Þ D0

?
	 0

� Ds0
?
� 0

� 
¼ 2: ð40Þ

Note that Ds0
? and � 0 are known in terms of the input param-

eters via equations (28)–(30) [recalling that D2D
? ¼ (I /2)1/2]. In

particular,

Ds0
? ¼

ffiffiffiffiffiffiffiffiffi
2lxly

p
k̃

�

� 2 þ 1

fsffiffiffiffiffiffiffiffiffiffiffiffi
1� fs

p b

B0

ð41Þ

� 0Ds0
? ¼

ffiffiffi
2

p
lx

k̃

� 2

� 2 þ 1

1

�

fsffiffiffiffiffiffiffiffiffiffiffiffi
1� fs

p b

B0

ð42Þ

Ds0
?
� 0

¼
ffiffiffi
2

p
ly

k̃

�

� 2 þ 1

fsffiffiffiffiffiffiffiffiffiffiffiffi
1� fs

p b

B0

: ð43Þ
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Now suppose that � ! 1, while � is fixed. Then the terms
Ds0

? /�
0 and � 0Ds0

? go to zero and a constant, respectively. The
coupled equations become

D0
?

1

	 0
þ 1

� 
	 0D0

? � � 0Ds0
?

� �
¼ 2 ð44Þ

D0
? 	 0 þ 1ð Þ D0

?
	 0

� 
¼ 2: ð45Þ

For this case, if � 0Ds0
?T1, which implies D slab

x TD2D
x , the

equations above are

D0
?

1

	 0
þ 1

� 
	 0D0

?
� �

¼ 2

D0
? 	 0 þ 1ð Þ D0

?
	 0

� 
¼ 2:

The solutions are D0
? � 1 and 	 0 � 1. That is, when � ! 1 and

D slab
x TD2D

x , the diffusion coefficients tend to two-dimensional
values (Di � D2D

i ). If instead � 0Ds0
? 31, which implies D slab

x 3
D2D

x , then considering equation (44) we know that 	 0D0
? must be

greater than � 0Ds0
? because the left-hand side of that equation

needs to be positive. Thus, 	 0 > � 0Ds0
? /D

0
?. From equation (45),

we can write

	 0 ¼ D02
?

2� D02
?

ð46Þ

and also

D0
? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ 1=	 0

s
: ð47Þ

Here we note from equation (47) that 0 < D0
? <

ffiffiffi
2

p
, so 	 0 3 1.

This in turn implies D0
? �

ffiffiffi
2

p
, and then equation (44) implies

that 	 0D0
? � � 0Ds0

? and 	 0 � � 0Ds0
? /

ffiffiffi
2

p
. Converting these to dif-

fusion coefficients, the solutions for the case where � ! 1 and
D slab

x 3D2D
x are Dx � D slab

x and Dy � 2D2D
x D2D

y /D slab
x , which

is much lower than D2D
y . Paradoxically, the increased slab tur-

bulence in the x-direction leads to decreased y-diffusion. That
means that when D slab

x makes Dx very large, it decorrelates the
random flights in the y-direction and also decreases the mean
free path in the y-direction and Dy. An analogous result in the
case of field-line separation was found by Ruffolo et al. (2004).

If � instead goes to zero, the roles of x- and y-components are
reversed. That is, if D slab

y TD 2D
y , then the diffusion coefficients

tend to two-dimensional values. If, on the other hand, D slab
y 3

D2D
y , then Dy � D slab

y and Dx � 2D2D
x D2D

y /D slab
y , which is much

lower than D2D
x .

Finally, we consider the case where � ! 1 for fixed �. It can
be shown that if D slab

? 3D2D
? , then Di � D slab

i . If D slab
? TD 2D

? ,
then Dy � D

slab
y while Dx � 2D2D

x D2D
y /D slab

y , which is again
much lower than D2D

x .

4. NUMERICAL CONFIRMATION

To confirm the conclusions of these analytic calculations, we
have also performed computer simulations of the field-line ran-
dom walk in nonaxisymmetric two-component turbulence. While
the simulations inevitably involve some discretization and statis-
tical errors, they do avoid the key assumptions of the analytic
work (Corrsin’s hypothesis and Gaussian probability distribu-
tions) and thus provide an independent check of their validity. For

axisymmetric turbulence, these assumptions have been compu-
tationally verified for the field-line randomwalk (Gray et al. 1996)
and for field-line separation (Ruffolo et al. 2004) to within�15%.

In order to simulate nonaxisymmetric turbulence, we con-
struct the power spectra differently in the x- and y-directions. For
slab turbulence, we set the power spectrum for simulations as

P slab
ii kzð Þ ¼ C slab

i

1þ kzkið Þ2
h i5=6 ; (i ¼ x; y); ð48Þ

where C slab
i is a normalization constant of the i-component, set

so as to obtain the desired slab turbulence energy, and ki is the
parallel correlation scale of the i-component, which is directly
related to the correlation length li. For the two-dimensional
component, we instead specify the power spectrum A(kx; ky)
because as discussed in x 2, the power spectra P 2D

xx and P 2D
yy can

be written as

P 2D
xx (kx; ky)¼ k 2

y A k 0?
� �

P 2D
yy (kx; ky)¼ k 2

x A k 0?
� �

; ð49Þ

where k 0? is defined in x 2. The function of A that we use for
simulations is

A k 0?
� �

¼ C 2D

1þ k 0?l?ð Þ2
h i7=3 : ð50Þ

This form of the two-dimensional spectrum also permits the
axisymmetric case when � ¼ 1. These forms of the slab and
two-dimensional power spectra are consistent with a Kolmo-
gorov power law in the omnidirectional power spectrum at high
wavenumber (Ruffolo et al. 2004) while rolling over to constant
values of P slab

ii
and A at small wavenumbers. They provide a

reasonable description of observed power spectra in interplan-
etary space over the energy-containing and inertial ranges of
turbulence (Jokipii & Coleman 1968; Bieber et al. 1996).

Now we have the spectra of magnetic turbulence. The rela-
tions between the magnetic field fluctuations and power spectra
are

b slab
x kzð Þ ¼

ffiffiffiffiffiffiffiffiffiffi
P slab
xx

q
e i
x(k z) ð51Þ

b slab
y kzð Þ ¼

ffiffiffiffiffiffiffiffiffiffi
P slab
yy

q
e i
y(k z) ð52Þ

b2D
x (kx; ky) ¼ �iky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A(kx; ky)

p
e i
(k x; k y) ð53Þ

b2D
y (kx; ky) ¼ ikx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A(kx; ky)

p
e i
(k x; k y); ð54Þ

where 
 is an independent random phase for each Fourier mode.
After we generate the magnetic fluctuations in k space, we use
inverse Fourier transforms to convert them to real space. Now
we have a representation of two-dimensional and slab fluctua-
tions in the simulation box. Next, the field-line equations

d x

dz
¼ bx(x; y; z)

B0

;
dy

dz
¼ by(x; y; z)

B0

; ð55Þ

are solved by a fourth-order Runge-Kutta method with adaptive
step size control (Press et al. 1992).

After we get the positions of each field line, yielding the dif-
fusion coefficients, values of h�x2i and h�y2i are averaged over
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the set offield lines at�zmuch greater than the correlation length.
Then we determineDx ¼ h�x2i/(2�z) andDy ¼ h�y2i/(2�z).
To ensure that our set of field lines properly samples the ensem-
ble of magnetic fluctuations and to avoid periodicity effects, we
randomly set starting points of the field lines in the simulation
box, change the realization of the two-dimensional component for
every simulation, and trace the field lines to only a few percent of
the box length Lz.

To verify the theory, we perform the simulations for three cases.
For the first case, we confirm the theory for nonaxisymmetric slab
turbulence with no two-dimensional component. The results from
simulations are compared with the discrete theory, i.e., the solu-
tion to equations (27)–(30), in which the integrals used to deter-
mine lx , ly , hb2i slab, and k̃ are replaced by discrete sums over the
actual Fourier modes used in the simulations. This helps reduce
the effect of discrete Fourier modes on the comparison and al-
lows us to better check the assumptions underlying the theory.We
set Lx ¼ Ly ¼ Lz ¼ 100;000kx and trace the field lines over only
2.5% of Lz. The number of grid points is Nz ¼ 222 � 4 million.
The parameters governing anisotropy for this case are fsx /fsy , kx ,
and ky. In the axisymmetric case, we usually set kx ¼ ky ¼ 1 and
fsx ¼ fsy ¼ 0:5,where fsx ¼ hb2

x i
slab

/hb2i and fsy ¼ hb2
y i

slab
/hb2i.

If we change these three parameters to other values, the system
becomes nonaxisymmetric. In this simulation we set b/B0 ¼ 0:5
as a constant for all runs. The simulation results are shown inTable 1,
and they match the discrete theory quite closely.

In the second case, we simulate field lines in two-component
models that are nonaxisymmetric only in the two-dimensional
component but axisymmetric in the slab component (D slab

x ¼
D slab

y ). We maintain fsx ¼ fsy ¼ 0:5fs and kx ¼ ky ¼ 1, and vary
only the ellipticity � of A(kx; ky). Therefore, we should have a
constant D slab

x
¼ D slab

y for all of these runs. Moreover, we set
l? ¼ 1 and b/B0 ¼ 0:5 and perform two sets of simulations, for
E slab : E 2D ¼ 20 : 80, a good approximation for the solar wind

(Bieber et al. 1994, 1996), and for E slab : E 2D ¼ 80 : 20. In the
simulations, we trace 1000 field lines in the large box with Lz ¼
100;000kx and Lx ¼ Ly ¼ 200kx. The numbers of grid points are
Nx ¼ Ny ¼ 4096 and Nz ¼ 222. Tables 2 and 3 indicate the nu-
merical and theoretical values and their differences when we
vary the ellipticity � for E slab : E 2D ¼ 20 : 80 and 80 : 20. The
theoretical values and numerical results for those two cases are
also plotted in Figures 3 and 4, respectively. For E slab : E 2D ¼
20 : 80, we add two columns in Table 2, with kurtosis values of
each component, �x � h�x4i/h�x2i2 and �y � h�y4i/h�y2i2,
to test for similarity to Gaussian distributions, which have a
kurtosis of 3. We conclude that all kurtosis values are consistent
with those of Gaussian distributions.
Finally, to be sure that the theory also works for various cases

in which both the slab and two-dimensional turbulence are non-
axisymmetric, we independently vary the parameters that cause
nonaxisymmetry of the two-component turbulent field. We use
the box size and other parameters as previously, but vary fsx/fs,
kx , ky , and �. Table 4 shows the results, which indicate reason-
able agreement between simulations and the discrete theory.

5. SUMMARY

We analytically derive the field-line diffusion coefficients in
the directions x and y, perpendicular to the mean field direction
z, for nonaxisymmetric, two-component (2D+slab) turbulence,
with variances transverse to the mean magnetic field.We are mo-
tivated to explore the nonaxisymmetric field-line random walk
because of the measured nonaxisymmetry of magnetic fluctua-
tions in the solar wind in the inner heliosphere, and the possibility
that in the outer heliosphere there are substantial differences in the
energies and correlation scales of fluctuations in the two perpen-
dicular directions. The latter could be expected due to the much
stronger divergence of the solar wind flow in the �-direction com-
pared with the r-direction, as well as the shorter distance scale

TABLE 1

Discrete Theory and Simulation Results for the Diffusion Coefficients and Their Differences When We Vary fx , lx , and ly for Slab Turbulence Only

Run fx lx ly Dx Theory Dy Theory Dx Simulation Dy Simulation

�Dx

(%)

�Dy

(%)

1................................. 0.50 1.0 1.0 0.09762 0.09762 0.09591 0.09632 �1.75 �1.33

2................................. 0.25 1.0 1.0 0.04881 0.14644 0.04879 0.14400 �0.04 �1.67

3................................. 0.75 1.0 1.0 0.14644 0.04881 0.14859 0.04815 +1.47 �1.35

4................................. 0.50 1.0 2.0 0.09762 0.19200 0.09717 0.19738 �0.46 +2.80

5................................. 0.50 1.0 0.5 0.09762 0.05016 0.09989 0.04875 +2.33 �2.81

6................................. 0.50 2.0 1.0 0.19200 0.09762 0.19011 0.09640 �0.98 �1.25

7................................. 0.50 0.5 1.0 0.05016 0.09762 0.04941 0.09661 �1.50 �1.03

8................................. 0.75 1.0 2.0 0.14644 0.09600 0.14338 0.09625 �2.09 +0.26

TABLE 2

Comparison between Numerical and Theoretical Results of the Diffusion Coefficients for 20% Slab and 80% Two-dimensional Energies When � Is Varied

Run � Dx Theory Dy Theory Dx Simulation Dy Simulation

�Dx

(%)

�Dy

(%) � x = h�x4i/h�x 2i2 � y = h�y 4i/h�y 2i2

1.................. 0.25 0.0550 0.4038 0.0556 0.3767 +1.15 �6.72 2.90 3.05

2.................. 1/3 0.0711 0.3748 0.0722 0.3449 +1.60 �7.98 3.00 3.01

3.................. 0.5 0.1053 0.3172 0.1016 0.2771 �3.50 �12.64 3.01 2.95

4.................. 2/3 0.1392 0.2692 0.1340 0.2386 �3.77 �11.36 3.15 3.05

5.................. 1.0 0.2000 0.2000 0.1812 0.1778 �9.43 �11.10 3.09 2.97

6.................. 1.5 0.2692 0.1392 0.2350 0.1310 �12.70 �5.88 3.04 3.01

7.................. 2.0 0.3172 0.1053 0.2897 0.1021 �8.68 �3.02 2.98 2.93

8.................. 3.0 0.3748 0.0711 0.3535 0.0699 �5.68 �1.73 3.02 2.95

9.................. 4.0 0.4038 0.0550 0.3758 0.0572 �6.94 +4.07 3.02 2.89
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between intermittent structures in the r-direction. We explore the
nonaxisymmetric field-line random walk by adopting the addi-
tional assumptions of spatial homogeneity, the diffusion approx-
imation, and Corrsin’s independence hypothesis. The validity of
the diffusion approximation and Corrsin’s hypothesis is verified
by numerical simulations that do not rely on these assumptions.
The analytic results are nonperturbative in the sense that neither
the turbulent energy of the slab nor the two-dimensional compo-
nent is constrained to be small. The results also allow general and
independent functional forms for the slab and two-dimensional
power spectra.

We can see that the numerical results and theory are in quite
good agreement. For pure nonaxisymmetric slab turbulence, the
simulations agree very well with the theory, with differences less
than 3% (Table 1). It is interesting to note the discrepancy be-
tween simulations and theory when Eslab : E2D ¼ 20 : 80 (the
energy ratio in the solar wind) and the field is nonaxisymmetric
only in the two-dimensional component (see Fig. 3 and Table 2).
This is large (9%–13%) when � is near 1, and it drops when
�31 and �T1.Moreover, the discrepancy in the direction that
gives a large diffusion coefficient is always greater than that in
the direction that gives a small value.Whenwe decrease the frac-
tion of turbulent energy in the two-dimensional component to
20% (Eslab : E2D ¼ 80 : 20; see Fig. 4 and Table 3), the differ-
ences between theory and numerical results decrease. It seems
that the two-dimensional turbulent energy affects the discrep-

ancy between theory and simulations. However, the differences
are still within 15%,which is similar to that obtained byGray et al.
(1996). Furthermore, the theory is also verified in the case where
both slab and two-dimensional turbulence are nonaxisymmetric
(Table 4).

The two-component model considered here is a particular case
of anisotropic turbulence, in which power in k space is concen-
trated along the parallel (kz) axis and along the perpendicular
(kx; ky) plane, which has been shown to provide a useful descrip-
tion of solar wind turbulence and associated particle transport
phenomena (Matthaeus et al. 1990; Bieber et al. 1994, 1996). For
slab turbulence, we allow nonaxisymmetry in the form of inde-
pendent power spectra in the x- and y-directions, i.e., a general
polarization. For two-dimensional turbulence, one can have non-
axisymmetry in terms of stretching in one direction, so we con-
sider a power spectrum A(kx; ky) of the potential function that is
constant along ellipses in (kx; ky). Some previous studies of non-
axisymmetric turbulence (e.g., Pommois et al. 1999, 2001) have
instead considered an ‘‘ellipsoidal’’ power spectrum with no po-
larization and turbulent energy that is constant along ellipsoids
in k space, which has the advantage of including oblique wave-
vectors, and the disadvantages that analytic calculations are more
difficult and certain quantities cannot be varied independently,
such as Pii as k ! 0 along different directions. The model differ-
ences are sufficiently great that we defer a proper comparison to
future work.

TABLE 3

Comparison between Numerical and Theoretical Results of the Diffusion Coefficients for 80% Slab

and 20% Two-dimensional Energies When � Is Varied

Run � Dx Theory Dy Theory Dx Simulation Dy Simulation

�Dx

(%)

�Dy

(%)

1.................................. 0.25 0.0923 0.1508 0.0894 0.1651 �3.20 +9.44

2.................................. 1/3 0.0991 0.1574 0.0984 0.1653 �0.69 +5.06

3.................................. 0.5 0.1122 0.1595 0.1155 0.1688 +2.91 +5.84

4.................................. 2/3 0.1241 0.1554 0.1283 0.1636 +3.38 +5.27

5.................................. 1.0 0.1418 0.1418 0.1439 0.1448 +1.51 +2.16

6.................................. 1.5 0.1554 0.1241 0.1640 0.1275 +5.58 +2.72

7.................................. 2.0 0.1597 0.1123 0.1653 0.1119 +3.49 �0.41

8.................................. 3.0 0.1574 0.0991 0.1700 0.0981 +8.02 �0.93

9.................................. 4.0 0.1508 0.0923 0.1622 0.0904 +7.51 �2.09

Fig. 3.—Diffusion coefficients from discrete theory and simulations for an
energy ratio Eslab : E2D ¼ 20 : 80, when we vary only the ellipticity � (see text
for details).

Fig. 4.—Diffusion coefficients from discrete theory and simulations for an
energy ratio E slab : E 2D ¼ 80 : 20, when we vary only the ellipticity � (see text
for details).
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The solution for the diffusion coefficients in our model of
nonaxisymmetric two-component turbulence is in the simple form
of coupled biquadratic equations. We also show closed-form and
limiting expressions for special cases of interest. In some cases
there is a counterintuitive result that enhanced fluctuations in one
direction lead to decreased diffusion in the other direction. This is
because the long random flights in one direction tend to decor-
relate the turbulence in the other direction. It is shown that extreme
nonaxisymmetry always leads to diffusion coefficients propor-
tional to the rms two-dimensional fluctuation (i.e., proportional to
b/B0). Since strong nonaxisymmetry might be expected in the

outer heliosphere as the solar wind stretches differently in the two
perpendicular (nonazimuthal) directions, this result is relevant to
the heliospheric transport of charged particles, such as solar mod-
ulation of Galactic cosmic rays.
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TABLE 4

Comparison between Numerical and Theoretical Results of the Diffusion Coefficients When We Vary All Nonaxisymmetry Parameters

Eslab :E2D fx lx l y � Dx Theory Dy Theory Dx Simulation Dy Simulation

�Dx

(%)

�Dy

(%)

20:80 ............................ 0.25 1.0 1.0 1.0 0.18260 0.21824 0.15744 0.20091 �13.78 �7.94

0.5 1.0 2.0 1.0 0.18881 0.22193 0.17234 0.20854 �8.72 �6.03

0.75 1.0 2.0 2.0 0.30971 0.11456 0.30420 0.10064 �1.78 �12.15

80:20 ............................ 0.25 1.0 1.0 1.0 0.09353 0.19602 0.09823 0.19983 +5.02 +1.94

0.5 1.0 2.0 1.0 0.14387 0.19154 0.13487 0.21980 �6.26 +14.75

0.75 1.0 2.0 2.0 0.19869 0.10668 0.21412 0.10718 +7.77 +6.10
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