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ABSTRACT

Among the space weather effects due to gradual solar storms, greatly enhanced high-energy ion fluxes contribute
to radiation damage to satellites, spacecraft, and astronauts and dominate the hazards to air travelers, which
motivates examination of the transport of high-energy solar ions to Earth’s orbit. Ions of low kinetic energy (up
to ∼2 MeV nucleon−1) from impulsive solar events exhibit abrupt changes due to filamentation of the magnetic
connection from the Sun, indicating that anisotropic, field-aligned magnetic flux tubelike structures persist to Earth’s
orbit. By employing a corresponding spherical two-component model of Alfvénic (slab) and two-dimensional
magnetic fluctuations to trace simulated trajectories in the solar wind, we show that the distribution of high-energy
(E � 1 GeV) protons from gradual solar events is squeezed toward magnetic flux structures with a specific polarity
because of the conical shape of the flux structures. Conical flux structures and the squeezing of energetic particle
distributions should occur in any astrophysical wind or jet with expanding, magnetized, turbulent plasma. This
transport phenomenon contributes to event-to-event variability in ground level enhancements of GeV-range ions
from solar storms, presenting a fundamental uncertainty in space weather prediction.
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relations – solar wind – turbulence

1. INTRODUCTION

Turbulence in the expanding solar wind can be exam-
ined in situ, and its magnetic fluctuations include quasi two-
dimensional (2D) flux structures (Matthaeus et al. 1990;
Weygand et al. 2009) similar to flux tubes (Borovsky 2008).
Sudden dropouts of low-energy particle fluxes (Mazur et al.
2000; Gosling et al. 2004) are observed from impulsive solar
flares, which inject particles over a narrow angular region near
the Sun (Reames 1990). Dropouts can be understood in terms
of filamentation of the magnetic connection from the injection
region due to flux tubelike structures that persist to Earth’s or-
bit (Giacalone et al. 2000; Ruffolo et al. 2003; Zimbardo et al.
2004; Trenchi et al. 2013). However, previous observational and
simulation studies have reported a lack of dropouts for ions up
to ∼2 MeV nucleon−1 from gradual solar storms (Mazur et al.
2000), in which particles are injected over a wide volume of
space, because there is continuous magnetic connectivity to a
very wide source region.

Enhanced fluxes of relativistic solar ions are generally asso-
ciated with gradual events (Reames 2009). Such ions contribute
to space weather effects ranging from satellite and spacecraft
damage to health hazards to humans in space (Shea & Smart
2012). Because the lower energy particles that are a major con-
cern in space do not penetrate to aircraft altitudes, relativistic
solar ions are the only solar particles of concern for radiation
exposure of air travelers and aircraft electronics (Wilson et al.
2003; Lantos 2006). They can also provide the earliest indica-
tion of the onset of a space radiation storm (Kuwabara et al.
2006). Thus, their transport to Earth’s orbit is of substantial in-
terest. Here we consider protons of 100 MeV to 10 GeV from
gradual solar storms and use computer simulations to trace their
trajectories in a model of interplanetary magnetic fluctuations.

While standard dropout features are indeed absent because of
the wide injection region for a gradual event, we have found a
novel squeezing of the proton distribution toward higher values
of the magnetic potential function for 2D flux structures. Since
the potential function of 2D turbulence is generally not known in
advance, this represents a basic uncertainty in forecasting of rel-
ativistic space radiation levels. Because quasi-2D structures are
expected in any magnetized, turbulent plasma (Shebalin et al.
1983; Goldreich & Sridhar 1995), the squeezing effect should
apply to other astrophysical winds and jets with expanding mag-
netic turbulence.

2. MODELING

We have combined various observed properties of solar wind
turbulence to develop a new magnetic field model with two-
component fluctuations in spherical geometry,

B = B0 + b(r) = B1r
2
1

r2
+

[bslab(r) + b2D(ϕ, Λ)]r2
1

r2
, (1)

where B0 is the radial mean field, which is B1 = B1r̂ at
r1 = 1 AU (at Earth’s orbit) with B1 = 5 nT over the
region of interest. The slab fluctuation bslab depends on r,
the distance from the solar center, and the 2D fluctuation b2D

depends on solar longitude ϕ and latitude Λ. We can write
b2D(ϕ, Λ) = ∇ × [a(ϕ, Λ)r̂], where a is the magnetic potential
function. The fluctuation model is motivated by solar wind
observations, including the use of two components (Matthaeus
et al. 1990), transverse fluctuations (b ⊥ B0) (Belcher & Davis
1971), a constant amplitude relative to the mean field (Tu et al.
1984), and the specific form bslab(r) (Saur & Bieber 1999). In
addition, a particle transport theory based on 80% 2D and 20%
slab turbulent energy was able to explain the mean free path of
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Figure 1. Drift of relativistic solar ions toward certain turbulent flux structures,
which can lead to a highly nonuniform distribution in space. A major solar
radiation storm involves a coronal mass ejection (CME) that drives a shock
(green line), which may accelerate ions to GeV energies, causing significant
space weather effects on human activity in space. We show that in the small-scale
conical structures of magnetic field lines (red lines) in solar wind turbulence,
trajectories of such ions (blue lines) are subject to strong drifts (inset, black
arrows) inward for structures with counterclockwise (CCW) magnetic winding
and outward from clockwise (CW) structures. The size of the flux structures
is exaggerated for clarity; the typical angular width is ∼2◦. A relativistic
solar particle event typically lasts for a short time, while the Earth is within
one structure, so the squeezing of energetic particle distributions toward the
centers of CCW structures contributes to event-to-event variability and poses a
fundamental uncertainty in space weather prediction.

solar particle transport at low solar latitude (Bieber et al. 1994).
We use the radial mean field as an approximation to the Parker
spiral field (Parker 1958) because it is difficult to formulate a
global 2D fluctuating field for the latter. The radial large-scale
field does allow the key transport process of adiabatic focusing
(Roelof 1969; Ruffolo 1991). This model does not include a
heliospheric current sheet and corresponding reversal of the
mean field. We tested including a mean field reversal and found
that our conclusions are qualitatively unchanged, so we choose
to demonstrate the squeezing effect for the simpler case of a
constant mean field. We use a static magnetic field, which is
justified because we consider particles moving near the speed
of light, which is much greater than the flow speed, sound speed,
or Alfvén speed in the solar wind. In generating the 2D field, we
use a 2D MHD procedure to properly form coherent structures
such as small-scale current sheets (Seripienlert et al. 2010). In
any case, our key results are similar for random-phase (Ghilea
et al. 2011) or 2D MHD fields, both of which contain magnetic
flux structures as illustrated in Figure 1. On the basis of dropout
observations (Mazur et al. 2000), we infer that the flux structures
typically have an angular width of ∼2◦.

The procedure for generating a turbulent magnetic field from
the spherical two-component 2D+slab model is as follows. We
initially generate the fluctuations in a Cartesian geometry, and
use a Kolmogorov power spectrum for turbulence in the inertial

range. For the slab component, we use

P slab
xx (kz) = P slab

yy (kz) = Cslab

[1 + (kzλ)2]5/6
, (2)

where Cslab is the normalization constant for the desired slab
fluctuation energy 〈(bslab)2〉 and λ is a parallel bendover scale,
set to 0.02 AU. For a uniformly spaced set of kz values,
we set bj (kz) ∝ √

Pjj (kz)eiδj (kz) for a random phase δj (kz).
Then we use an inverse fast Fourier transform to obtain the
fluctuating magnetic fields in real space. To convert to a spherical
geometry, we identify the z-coordinate with the radius r and
use bslab

ϕ (r) = bslab
x (z) and bslab

Λ (r) = bslab
y (z)/ cos Λ, so that

∇ · bslab = 0. In our simulations, we set the box length in the
r direction to Lr = 10,000 λ, and the number of grid points is
Nr = 4,194,304. Magnetic field lines and particles are traced
only to a few percent of the slab simulation box length in order
to avoid periodicity effects (Ghilea et al. 2011).

For the 2D component, we generate a potential function a in
terms of the Cartesian coordinates x and y and then map it onto
the angular coordinates ϕ and Λ, respectively, at the reference
radius r1 = 1 AU. The potential function a(x,y) is generated in
two steps. First, we generate a function a(kx, ky) with a random
phase at each point in discrete 2D Fourier space for the power
spectrum

A(k⊥) = C2D

[1 + (k⊥�⊥)2]7/3
, (3)

where k⊥ ≡
√

k2
x + k2

y and C2D is the normalization constant
for the desired 2D fluctuation energy 〈(b2D)2〉. Here we set the
perpendicular bendover scale �⊥ to 0.033 AU. Then we set
a(kx, ky) ∝ √

A(k⊥)eiδ(kx ,ky ) for a random phase δ(kx, ky) and
perform an inverse fast Fourier transform. In the second step,
that random-phase potential is evolved according to a 2D MHD
procedure (Seripienlert et al. 2010).

The 2D MHD potential a(x,y) is then recast in terms of
heliolongitude ϕ = x/r1 and heliolatitude Λ = y/r1, and the
resulting function a(ϕ, Λ) is used to find the magnetic field
as indicated above. In doing so, for a high heliolatitude |Λ|
the 2D structures become distorted (shortened in longitudinal
distance) by a factor of cos Λ; thus, we use this procedure only
for small values of |Λ|. In our simulations, we set the box
length in the x- and y-directions to Lx = Ly = 40λ, and the
numbers of grid points are Nx = Ny = 1024. The ratio of slab
energy to 2D energy was 20:80, as suggested by a successful
explanation of the mean free path of solar energetic particle
(SEP) transport (Bieber et al. 1994). The magnetic fluctuation
field was normalized so that the ratio of the root-mean-squared
fluctuating field b to B1 was 0.5. We used an angular region
in (ϕ, Λ) of 50◦ × 50◦, centered around the solar equator, with
periodic boundary conditions for the magnetic field and for field
line and particle trajectories. With a uniform distribution of
initial conditions over the entire simulation region and periodic
boundary conditions, we can model the very wide injection
region for a gradual solar event and also avoid the dropout
effects that would result from a concentration gradient.

Particle trajectories were found by solving the Newton–
Lorentz equations using a fourth-order Runge–Kutta method
with an adaptive step size as documented by Dalena et al.
(2012). The initial direction of each particle at r = 0.1 AU
was parallel to the local magnetic field line in order to represent
the effect of strong adiabatic focusing at r < 0.1 AU (Ruffolo &
Khumlumlert 1995). We also tested assigning a random particle
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Figure 2. Squeezing of relativistic solar proton distributions into small-scale
counterclockwise (CCW) flux structures. (a) Magnetic potential function a vs.
solar longitude ϕ and latitude Λ for a 2D MHD model of the 2D component of
interplanetary magnetic turbulence. (b) Magnetic field line locations at Earth’s
orbit (r = 1 AU) as traced from 150,000 uniformly random initial positions at
r = 0.1 AU from the Sun. (c)–(f) Scatter plots of proton arrival locations at r =
1 AU for protons of various energies starting from the same initial locations as
the field lines in panel (b). As expected, at r = 1 AU the distribution of field
lines is uniform, and the distribution of protons of E = 100 MeV closely follows
that of the field lines. However, for higher energies the drift motion in conical
flux structures causes squeezing of the proton distribution toward higher values
of the magnetic potential, as found within CCW flux structures. The 10 GeV
proton density in panel (f) closely follows the magnetic potential shown in
panel (a).

direction up to 30◦ from the mean field direction and found no
noticeable change in the results.

3. DISTRIBUTION OF SOLAR ENERGETIC PARTICLES

We now examine the trajectories of magnetic field lines
and particles in a model magnetic field as described above.
Figure 2(a) shows a representation of the 2D turbulent magnetic
potential a(ϕ, Λ), where darker shading corresponds to higher
values. We traced 250,000 magnetic field lines and particle tra-
jectories from r = 0.1 AU for a uniformly random distribution
of initial angular positions over a 50◦ × 50◦ region centered at
the solar equator. Results for a random subsample of 150,000
are shown in Figures 2(b)–(f). These represent locations of par-
ticle acceleration due to a gradual solar event with a coronal
mass ejection driving a shock (Figure 1), which can accelerate

particles over a very wide angular range (Cane et al. 1991). As
expected for this magnetic field model from Liouville’s theo-
rem (Ruffolo et al. 2003), the field line distribution remained
uniformly random in (ϕ, Λ) at r = 1 AU (Figure 2(b)). We then
traced the trajectories of protons of various energies as a function
of time t from the same initial locations as the field lines at t = 0
and accumulated statistics of particle crossings of the spherical
shell r = 1 AU for vt � 4 AU, where v is the particle speed,
which is constant during propagation through a static magnetic
field as used here. There were no noticeable differences between
the (ϕ, Λ) distributions at r = 1 AU for different vt intervals,
and we considered vt � 4 AU to provide a sufficient time
period for accumulation of statistics on promptly arriving parti-
cles. The resulting particle-arrival locations at 1 AU are shown in
Figures 2(c)–(f). Protons of 100 MeV (or lower) closely follow
magnetic field lines, and their distribution is also homogeneous.
At 1 GeV, the proton distribution appears slightly nonuniform
(Figure 2(d)). Next, we consider a proton energy of 4 GeV, and
our results in Figure 2(e) show a novel squeezing effect, where
the energetic particles are concentrated into certain regions of
(ϕ, Λ). For 10 GeV protons (Figure 2(f)), the squeezing effect
is even stronger, and the particle density appears closely related
to the 2D potential function (Figure 2(a)). We obtained similar
results for alpha particles of the same gyroradius (i.e., the same
momentum per charge), and we expect that they apply to any
ion species. For a narrower angular range of proton injection,
as for an impulsive solar flare, the squeezing effect also occurs,
together with a dropout pattern; however, relativistic protons are
usually not observed from impulsive events.

To explain the squeezing effect, we note that in an expanding
plasma flow the 2D magnetic flux structures expand with
distance to form roughly conical shapes. As illustrated in
Figure 1, in a conical magnetic flux tube, the drift motion
has a component that systematically brings positive particles
inside (outside) a flux surface with b that is counterclockwise
(clockwise) around a maximum (minimum) of the 2D potential
function (Krittinatham & Ruffolo 2009). For negative particles
the drift motion is reversed. The deflection is governed by
the drift speed relative to the particle speed, which increases
with particle momentum, hence the increased squeezing at
higher energy in Figure 2. From that figure, we see that the
characteristic scale size of the squeezing pattern increases with
the particle energy. Apparently, the particles are less sensitive
to potential maxima with “catchment basins” smaller than their
gyro-orbits, leading to a coarser squeezing pattern at higher
energies. Thus, at any given location, the pattern of enhancement
or reduction can change with energy, and the energy spectrum
of particles at Earth does not necessarily represent the spectrum
emitted near the Sun as commonly assumed in data analysis.
This is consistent with observations of weak correlation between
proton fluxes at E ∼ 10 MeV and E ∼ 1 GeV (Gopalswamy
et al. 2012). The simulations indicate stronger squeezing at
greater distances from the Sun, but they assume r-independent
flux structures of 2D turbulence. SEP dropout observations
(Mazur et al. 2000; Gosling et al. 2004) indicate that the
structures commonly remain intact to r = 1 AU; it is not clear
as to what distance they survive beyond that.

The squeezing effect is related to the curvature and gradient
drifts of particles in conical magnetic flux structures (Figure 1).
The standard relativistic formulae for these so-called guiding
center drifts (Krittinatham & Ruffolo 2009) are derived by
assuming the particle gyroradius to be much smaller than the
scales of variation in the magnetic field. The squeezing effect

3



The Astrophysical Journal, 779:74 (6pp), 2013 December 10 Ruffolo et al.

is essentially the same physical process as guiding center drifts
in conical flux structures, but here we will show that it can
also occur when the gyroradius is not small compared with the
length scales of magnetic field variation. In the remainder of this
section, we first apply the standard formulae for guiding center
drifts, and then we use a more general Hamiltonian approach
that does not assume a small gyroradius.

Consider a particle moving with guiding center speed v||
along the field line and gyration speed v⊥. For simplicity, let
us demonstrate the effect for bslab = 0 and b2D along a conical
“flux tube” with azimuthal symmetry, defining a new spherical
coordinate system (r, θ ′, ϕ′) with θ ′= 0 along the flux tube axis.
Then we use a magnetic field

B = [B1r̂ + b2D(θ ′)ϕ̂′]r2
1 /r2 (4)

and define an aspect angle β by

tan β = b2D

B1
. (5)

After some straightforward but laborious calculations of guiding
center drifts, we find that the θ ′-component of the curvature
drift is

vc,θ ′ = −γmv2
||

qB

(
sin β

r
+ cos β

∂β

∂r

)
(6)

and the θ ′-component of the gradient drift is

vg,θ ′ = γmv2
⊥

qB
sin β

(
−1

r
+

tan β

2

∂β

∂r

)
, (7)

where B = B0 sec β = B1(r2
1 /r2) sec β. There is strong

adiabatic focusing near the Sun, so we expect particles to move
nearly parallel to the magnetic field, and most relativistic solar
particles are observed to be strongly beamed in interplanetary
space near Earth (Bieber et al. 2002, 2013; Ruffolo et al. 2006).
Thus, we typically have v2

||  v2
⊥, and we expect the curvature

drift to dominate over the gradient drift. Note that in our model,
β is constant with r. Then we sum Equations (6) and (7) to
obtain a total θ ′-drift speed of

vθ ′ = − γmv2

qB1r
2
1

sin β cos β · r, (8)

which is directed inward for q sin β > 0, e.g., for a positively
charged particle in a counterclockwise (CCW) flux structure,
and outward for q sin β < 0. This is consistent with the
squeezing effect seen in simulations, but these formulae for
guiding center drifts assume a small gyroradius and may not
apply to the GeV-range solar ions considered in this work.

A Hamiltonian approach can also be used to derive the drift
velocity. It has the advantages of not requiring a small gyrora-
dius and providing a useful conservation law. In particular, the
azimuthal angle ϕ′ is a cyclic variable, so its conjugate momen-
tum pϕ′ is conserved:

pϕ′ = γmr2 sin2 θ ′ · ϕ̇′ + qr sin θ ′ · Aϕ′ = constant. (9)

The magnetic field (Equation (4)) can be described by a vector
potential

A(r, θ ′) = Ar (θ ′)r̂ − B1r
2
1 cot θ ′

r
ϕ̂, (10)

where bϕ′ = b2D(θ ′) = −(1/r)(∂Ar/∂θ ′). Then we have

pϕ′ = γmr2 sin2 θ ′ · ϕ̇′ − qB1r
2
1 cos θ ′ = constant. (11)

This conservation law allows us to infer a simple relationship
between θ ′ and r, after some approximations. Suppose that in
the absence of scattering associated with slab turbulence, the
particle is highly focused to move nearly parallel to the magnetic
field. Then we use a gyro-averaged vϕ′ = r sin θ ′ · ϕ̇′ ≈ v sin β
to obtain

pϕ′ = constant = γmr sin θ ′ · v sin β − qB1r
2
1 cos θ ′. (12)

We then assume that β is sufficiently small to use sin β ≈
tan β = b2D(θ ′)/B1. We further assume that the flux rope
interior has

b2D = ±b
sin θ ′

sin θ⊥
, (13)

where sin θ⊥ = λ⊥/r and λ⊥ is a length scale of the 2D
turbulence that represents a typical size of 2D structures and
is proportional to r. We use the “+” sign for a CCW flux tube
and “−” for a clockwise (CW) flux tube. We refer to the value
of λ⊥ at r1 as λ1, so sin θ⊥ = λ1/r1. Assuming θ ′ to be small,
we use cos θ ′ ≈ 1 − sin2 θ ′/2 to obtain

pϕ′ = constant = ±γmr sin θ ′ · v
b

B1

r1 sin θ ′

λ1

− qB1r
2
1

(
1 − 1

2
sin2 θ ′

)
(14)

sin2 θ ′
(

1

2
qB1r

2
1 ± γmv

b

B1

r1

λ1
r

)
= constant (15)

sin−2 θ ′ ∝ 1 ± 2
b

B1

rg1

λ1
r, (16)

where rg1 = γmv/(qB1) is the gyroradius at the location of
interest, r = r1. Note, however, that relativistic solar particles
often have a low pitch angle, in which case the actual gyro-
orbit at the radius of interest may have a much smaller extent
than rg1, as will be discussed below. Finally, we can define a
twist scale,

λt = λ1

2b/B1
, (17)

whose interpretation will be discussed below, and then

sin−2 θ ′ ∝ 1 ± rg1

λt

r

r1
. (18)

Note that the “+” sign, for a CCW flux tube, implies that
θ ′ decreases with radius, whereas the “−” sign, for a CW flux
tube, implies that θ ′ increases with radius. Thus, the equation
can explain the squeezing effect seen in simulations of two-
component turbulence, with particles drawn inward to CCW
flux structures and ejected outward from CW flux structures.
This equation is quantitatively consistent with the drift equation
(Equation (8)), within the range of validity of the underlying
assumptions. The squeezing effect is strong when the second
term on the right-hand side of Equation (18) exceeds the first
at the radius of interest, r = r1, which is the case when
rg1 � λt . This condition determines the energy range above
which squeezing is strong at the location of interest.
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Figure 3. Simulated distribution of relativistic solar proton count rates, showing enhanced variability due to the squeezing effect. (a)–(d) Scatter plots, where each
point represents a square-degree box at 1 AU from the Sun, showing the magnetic potential function a in units of arms as a function of the particle count in that box for
various proton energies. (e)–(h) Histograms of particle counts for the same energies. At higher energy, the squeezing effect is stronger, and protons systematically drift
to regions of higher a. At 100 MeV, the distribution width is dominated by the simulation’s counting statistics, but at E � 1GeV the width greatly increases because
of the squeezing effect.

In the context of this derivation for a single flux tube, the
scale λt represents the perpendicular distance r sin θ ′ where we
would find b2D = B1/2, based on the rate of growth of b2D with
sin θ ′ as specified by Equation (13). A variation in b2D of order
B1 implies a substantial twist in the total magnetic field, which
is why we call λt the twist distance. This actually specifies a
rate of change of b2D with perpendicular distance, so it is not
necessary that the flux tube must achieve b2D = B1/2. In other
words, the flux tube could be narrower, yet involve sufficiently
rapid variation with perpendicular distance that λt � rg1, in
which case the squeezing effect could apply.

Now let us consider the physical limits to the squeezing ef-
fect. As noted earlier, our simulations (and derivation) of the
squeezing effect assume the persistence of 2D flux structures
independent of r. From observations of dropouts (Mazur et al.
2000; Gosling et al. 2004), it is known that many 2D flux struc-
tures persist from the Sun to 1 AU. However, such persistence
may not actually be a requirement for the squeezing effect.
Whatever the 2D structure is, the squeezing can lead to further
spatial bunching of the particle distribution.

We note that the squeezing will naturally cease when θ ′ is
so small that the gyro-orbit encompasses the central axis of
the flux structure, invalidating our approximation for vϕ′ . Now
the radius of a gyro-orbit is rg sin α, where α is the pitch
angle between the momentum vector and B0, and typically
relativistic solar particles at Earth are initially concentrated at
sin α � 1 because of intense adiabatic focusing near the Sun
(Bieber et al. 2002; Ruffolo et al. 2006), so rg sin α � rg .
In the absence of scattering, as in the above derivation, the
magnetic moment is conserved to a very good approximation.
From that approximation, we can derive the angular extent of
the gyro-orbit as rg sin α/r ∝ cos1/2 β ≈ 1, i.e., the angular
extent can remain small roughly independently of r. On the

other hand, our simulations include slab fluctuations and exhibit
some scattering, as does the solar wind. In the presence of pitch
angle scattering, the angular extent of the gyro-orbit need not
remain constant, and may eventually increase to encompass the
axis of the flux structure, after which the squeezing effect is not
applicable. Furthermore, as noted earlier with regard to Figure 2,
the “catchment basins” of the squeezing effect are apparently
wider for increasing particle energy because the larger gyro-
orbits are primarily affected by the larger-scale turbulent flux
structures.

The twist scale can also be defined for a turbulent magnetic
field, though it is based on an approximate description in terms
of flux tubes and is therefore not precisely determined. In
our simulations of two-component turbulence, we use a root-
mean-squared turbulent magnetic field of b = 0.5B1, which
is predominantly comprised of 2D fluctuations, so according
to Equation (17) we use λt = λ1. To estimate this scale, we
consider two viewpoints. According to Section 2, the bendover
scale of the 2D turbulence is �⊥ = 0.033 AU. If this represents
the radius of a flux rope with b2D given by Equation (13),
then to obtain a root-mean-squared fluctuation of b we need
λt = λc2/

√
2 = 0.023 AU. From observations of dropouts

(Mazur et al. 2000), the typical size of a flux structure was found
to be 0.03 AU, as sampled by random transects of the spacecraft
through the structures. Using that value divided by

√
2 yields

about λt ≈ 0.02 AU. These two estimates are consistent; when
we adopt the latter, our expectation that the squeezing effect
is strong for rg1 � λt corresponds to a proton energy range
of E � 4 GeV, which is consistent with the simulation results
shown in Figure 2.

We note that fundamental processes of turbulence in any
magnetized plasma should lead a 2D turbulent cascade with
wave vectors perpendicular to the large-scale magnetic field
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(Shebalin et al. 1983; Goldreich & Sridhar 1995), so we expect
that expanding magnetic turbulence in other astrophysical winds
and jets should also exhibit roughly conical flux structures and
a similar squeezing effect.

4. IMPLICATIONS FOR SPACE WEATHER VARIABILITY

We also examine variability in the flux of relativistic solar
protons due to the squeezing effect. For the proton arrival
locations as shown in Figure 2, using the full sample of 250,000
particle trajectories, we determine the distribution of proton
counts in each of 2500 square-degree boxes shown in Figure 3.
On average, there are ≈100 counts per box. For the lowest
energy, 100 MeV, the variability is dominated by statistical
counting uncertainty (which would be lower for a detector that
observes larger numbers of particles). However, at 1 GeV there
is a substantial correlation (0.42) between the count rate and the
magnetic potential function a. At a ≈ −3 we found ≈70–90
counts deg−2, but at a = 3 there were 120–160, implying up to
two-fold variability due to the squeezing effect, even if it is not
visually striking in Figure 2(d). For E = 4 GeV and 10 GeV,
the squeezing effect is stronger and dramatically enhances the
variability of the counting distribution.

Because of space weather effects of solar storms on human
activity, there is substantial effort in the community to analyze
past solar events and predict SEP fluxes for future events.
The strongest space weather effects are associated with ground
level enhancements (GLEs), i.e., solar storms that produce high
fluxes of relativistic ions above the threshold (≈450 MeV) to
shower in Earth’s atmosphere and generate signals in ground
level detectors (e.g., neutron monitors) above the background
level due to galactic cosmic rays (Shea & Smart 2012). In GLE
observations, the relativistic solar ion flux typically decays over
a few hours (Shea & Smart 2012), during which time the Earth
is usually within a single magnetic flux structure; therefore,
the variability shown in Figure 3 will be manifest as event-to-
event variability. There are known sources of SEP event-to-event
variability that are difficult to predict, including the ambient
population of “seed” ions (Desai et al. 2003), details of the
acceleration process (Tylka & Lee 2006), and transport effects
such as the interplanetary magnetic configuration, scattering
mean free path, and direction of particle beaming (Bieber
et al. 2002; Ruffolo et al. 2006), but these can be analyzed
a posteriori. In this work we point out the squeezing effect
as another strong source of variability in the spectrum and
flux of the most energetic solar ions, i.e., the relativistic (GeV-
range) ions detected in GLEs. For the foreseeable future, there
will be no three-dimensional mapping of the interplanetary
magnetic field near Earth over turbulent correlation scales,
making it difficult to observationally discern Earth’s location

with respect to turbulent flux structures of the relevant scales
and perform a posteriori analyses of their effects. Thus, we
must rely on computer simulations to characterize the effects of
squeezing of the relativistic solar particle distribution as a source
of uncertainty in the prediction of associated space weather
effects.
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