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ABSTRACT

In recent observations by the Advanced Composition Explorer, the intensity of solar energetic particles exhibits
sudden, large changes known as dropouts. These have been explained in terms of turbulence or a flux tube
structure in the solar wind. Dropouts are believed to indicate filamentary magnetic connection to a localized
particle source near the solar surface, and computer simulations of a random-phase model of magnetic turbulence
have indicated a spatial association between dropout features and local trapping boundaries (LTBs) defined for a
two-dimensional (2D) + slab model of turbulence. Previous observations have shown that dropout features are not
well associated with sharp magnetic field changes, as might be expected in the flux tube model. Random-phase
turbulence models do not properly treat sharp changes in the magnetic field, such as current sheets, and thus cannot
be tested in this way. Here, we explore the properties of a more realistic magnetohydrodynamic (MHD) turbulence
model (2D MHD), in which current sheets develop and the current and magnetic field have characteristic non-
Gaussian statistical properties. For this model, computer simulations that trace field lines to determine magnetic
connection from a localized particle source indicate that sharp particle gradients should frequently be associated
with LTBs, sometimes with strong 2D magnetic fluctuations, and infrequently with current sheets. Thus, the
2D MHD + slab model of turbulent fluctuations includes some realistic features of the flux tube view and is
consistent with the lack of an observed association between dropouts and intense magnetic fields or currents.

Key words: interplanetary medium – magnetic fields – magnetohydrodynamics (MHD) – Sun: particle emission –
turbulence

1. INTRODUCTION

Observations of the interplanetary medium, and in particular
the solar wind and magnetic fields evolving from their solar
source, have revealed a complex spatial and temporal structure
in plasma and magnetic properties. In addition to large-scale
discontinuities such as corotating interaction regions, coronal
mass ejections, and their associated shocks, as well as magnetic
sector boundaries, there is also strong evidence for small-scale
structure and filamentary connection to the Sun. Such evidence
includes strong tails in statistical distributions of changes in
magnetic field direction and plasma properties (e.g., Bruno
et al. 2001; Borovsky 2008; Li 2008; Greco et al. 2009). In
addition, particularly useful probes of magnetic connection are
solar energetic particles (SEPs) from impulsive solar flares.
Such flares occur as discrete events and inject particles from
a small region of the solar surface (Reames et al. 1990), and
SEPs of energies �10 MeV follow magnetic field lines quite
closely, so the particles serve as excellent tracers of magnetic
connection from a localized particle source at the Sun. The
“dropouts” in SEPs from impulsive solar flares (Mazur et al.
2000; Gosling et al. 2004), in which the measured particle
flux undergoes sudden, large changes, frequently seeming to
disappear and reappear, suggest a filamentary distribution of
magnetic connection to the particle source (Giacalone et al.
2000; Ruffolo et al. 2003; Zimbardo et al. 2004).

One interpretation of the filamentary connection to the Sun
is that the solar wind comprises “spaghetti-like” winding flux
tubes separated by sharp boundaries (Parker 1963b; McCracken
& Ness 1966; Bruno et al. 2001; Borovsky 2008). In this
view, the flux tube boundaries are taken to be distinct from

the well-known magnetic fluctuations with a turbulent power
spectrum (Jokipii & Coleman 1968). From another point of
view, the apparent flux tube structure could be a natural
consequence of the turbulent evolution of magnetic fluctuations
in a plasma. Starting from fluctuations in the magnetic field at
the solar wind source, the larger-scale structures evolve more
slowly (Kármán & Howarth 1938; Matthaeus et al. 1996),
and could survive as “fossil turbulence” at a distance of 1
AU from the Sun (Giacalone et al. 2006), while smaller-scale
structures join a turbulent cascade (Kolmogorov 1941) to even
smaller scales where the energy is dissipated (Coleman 1968;
Verma et al. 1995; Leamon et al. 1998; Sahraoui et al. 2009).
A number of studies (Matthaeus et al. 1990; Bieber et al.
1996) have observed that interplanetary magnetic fluctuations
near Earth necessarily include wavevectors k that are parallel
(“slab” fluctuations) and perpendicular (“2D” fluctuations) to
the large-scale field, with less power at oblique wavevectors. It
has been proposed that the interaction of counter-propagating
fluctuations with a component of k parallel to the mean field can
naturally produce 2D fluctuations at much higher perpendicular
k, leading to a component that can become approximately
2D. MHD simulations have provided substantial evidence for
this (Shebalin et al. 1983; Oughton et al. 1994), and various
models (Montgomery 1982; Higdon 1984; Goldreich & Sridhar
1995) build in this anisotropy as an assumption. A 2D-like
component can account for most of the interplanetary magnetic
fluctuation energy (Bieber et al. 1996), and is very similar to
the reduced MHD model (Strauss 1976; Montgomery 1982;
Zank & Matthaeus 1991). These processes naturally produce
a flux-tube like structure, yet allow the possibility that slab
fluctuations “shred” or distort the flux surfaces (Matthaeus
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et al. 1995; Ruffolo et al. 2004). The simple model that we
employ below is a parameterization that represents most of these
properties.

Based on theoretical results that express the magnetic field
line diffusion coefficient in terms of the turbulent power spec-
trum (Jokipii & Parker 1968; Matthaeus et al. 1995), it is a
reasonable first step to model turbulent fluctuations by sum-
ming over Fourier modes with the appropriate power spectrum
and to simply assign a random phase to each wave mode. In-
deed, models of magnetic turbulence frozen-in from the solar
source (Giacalone et al. 2000), with two components of slab
and 2D fluctuations (Ruffolo et al. 2003; Chuychai et al. 2007),
and with three-dimensional fluctuations (Zimbardo et al. 2004;
Pommois et al. 2005) have all been able to generate filamentary
magnetic connection that explain dropouts.

Given that large-scale diffusion of SEPs is quite rapid
(McKibben et al. 2001; McKibben 2005), specific mechanisms
are needed to explain sharp particle gradients over intermediate
distance scales. In the turbulence view, proposed mechanisms
include temporary topological trapping of field lines in “islands”
of the 2D turbulence (Ruffolo et al. 2003) and suppressed
diffusive escape where the 2D field is strong or irregular
(Chuychai et al. 2005, 2007; Tooprakai et al. 2007). Over
a long distance scale, magnetic field lines can escape their
temporary topological traps and undergo rapid lateral diffusion.
Naturally, the question arises as to the boundary of the “islands”
of field line trapping. In simulation results for random-phase
2D+slab turbulence, Chuychai et al. (2007) identified local
trapping boundaries (LTBs), defined as contours of constant 2D
potential where |b2D|2av is maximized with respect to neighboring
contours, as frequently defining sharp changes in magnetic
connection where dropout features would be expected, which in
some cases can be interpreted as boundaries of trapping regions.
The LTBs reflect the concept of temporary trapping along closed
2D orbits, with eventual escape due to slab fluctuations, as well
as the suppression of slab diffusive escape where the 2D field
is strong. Note that the turbulence is homogeneous, and there
is no “input” structure; the “islands” are regions around local
maxima and minima of a random 2D potential function.

The distinctions between the flux tube view and the turbu-
lence view are sometimes not recognized. For example, in the
context of observationally testing the concepts developed from
turbulence models, Chollet & Giacalone (2008) pointed out that
dropout features are not well correlated with sharp magnetic
field changes (such as current sheets). However, that observa-
tion actually addresses the flux tube view, in which trapping
within flux tubes is naturally envisioned as delineated by mag-
netic field changes, whereas simulations of random-phase tur-
bulence had indicated trapping within LTBs. In general, the lack
of an observed association between dropouts and features of the
magnetic field or current (Mazur et al. 2000; Gosling et al. 2004;
Chollet & Giacalone 2008) is problematic for the flux tube view,
in which the only surfaces available to trap plasma and field lines
are, by assumption, the flux tube boundaries themselves.

Another concern is the space filling of the field line trapping
regions (Kaghashvili et al. 2006), because a high space filling
could inhibit the transport of particles perpendicular to the
mean magnetic field. In the random-phase 2D+slab model, the
2D “islands” of temporary field line trapping are delineated
by LTBs, yielding a moderate space filling (Chuychai et al.
2007). Field lines in the interstitial “network” can rapidly diffuse
perpendicular to the mean field (Ruffolo et al. 2003). This
result is consistent with observations of SEP from impulsive

solar events. Flux-limited surveys, which require a substantial
particle intensity, indicate a narrow distribution for such events
in solar longitude (Reames 1992). This indicates only limited
lateral spreading for the bulk of SEPs, which we attribute to
trapping within small-scale topological islands, representing a
“core” region of high particle density (see Figure 3 of Ruffolo
et al. 2003). At the same time, observations of type III radio
bursts, which are sensitive to very low particle fluxes, indicate
that SEPs can undergo lateral motion by up to ∼90◦ in solar
longitude during their transport from the Sun to Earth orbit
(Cane & Erickson 2003). This laterally extended but less intense
“halo” of SEPs corresponds to particles on field lines initially
located in interstitial regions between the 2D islands. Indeed,
the absence of these halo SEPs from the core region is manifest
as dropouts.

In contrast, descriptions of the flux tube viewpoint typically
propose space-filling trapping regions, sometimes with a strict
interpretation of field line confinement in the flux tubes (see
Figure 1 and Section 8.1 of Borovsky 2008). Even if one
invokes a “cross-field” diffusion mechanism whereby particles
can cross field lines, it is difficult to reconcile escape that is slow
enough to preserve dropout features with the rapid diffusion
of SEPs as inferred from observations over short timescales
(Cane & Erickson 2003) and long timescales (McKibben et al.
2001; McKibben 2005), as well as the important role played by
perpendicular diffusion in the solar cycle dependent modulation
of Galactic cosmic rays (Parker 1965; Moraal 1976; Cane et al.
1999; Reinecke et al. 2000).

On the other hand, random-phase models of turbulence do not
contain current sheets, i.e., strong, thin current structures, which
clearly are present in the interplanetary medium. Current sheets,
or discontinuous or sharp magnetic features in general, require
that a large number of Fourier modes have coordinated phases
to create a jump that is spatially localized. The correlations
required to establish these structures are generated rapidly by
nonlinear turbulence processes (Servidio et al. 2008) that are
associated with non-Gaussian statistics and intermittency (Wan
et al. 2009). Random-phase models are also unable to explain
the observed distributions of strong jumps in various properties
of the solar wind as presented by Borovsky (2008).

In the present work, we aim to rectify these shortcomings
in the turbulence models by replacing the 2D random-phase
field by the output of a 2D MHD simulation. While compu-
tationally time-consuming, a 2D MHD model incorporates the
microphysics of the plasma to produce current sheets and struc-
tures resembling flux tubes. In this way, the concepts of the
flux tube view naturally appear in a more physical model of
the turbulent magnetic field. A 2D MHD + slab field with fil-
amentary magnetic connection has previously been used in an
explanation of “moss” emission in the solar transition region
(Kittinaradorn et al. 2009). Here, we examine the general prop-
erties of the 2D MHD field, in comparison with the random-
phase field, and trace magnetic field lines in a 2D MHD+slab
field in order to examine the expected dropout features of SEPs
from impulsive solar flares. We find that dropout features, i.e.,
sharp changes in magnetic connection to a localized source,
are frequently associated with LTBs, are sometimes associated
with strong 2D magnetic fluctuations, and are only infrequently
associated with current sheets. Thus, a more realistic model of
turbulent fluctuations can incorporate some attractive features of
the flux tube view and is consistent with the lack of an observed
association between dropouts and intense magnetic fields or
currents.
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Figure 1. 2D component of magnetic turbulence can be defined in terms of an irregular potential function a(x, y), whose curl is b2D. We compare contours of constant
potential, i.e., magnetic flux surfaces, for (a) a 2D random-phase field, in which a is a random function with a turbulent power spectrum and (b) the same field after
a 2D MHD procedure. A darker shading indicates a higher value of a. For the 2D MHD field, the contours of constant potential are superimposed with coloring to
indicate (c) b2 and (d) j2, for a current j = ∇ × b. The 2D MHD field is a more physically realistic model, reproducing aspects of the flux tube viewpoint, but with the
current concentrated in narrow current sheets. The present work examines the level of association between b2 or j2 and sharp changes in field line connection over a
distance of 1 AU, which relates to dropouts (sharp density changes) in SEPs as observed near Earth.

2. MAGNETIC TURBULENCE MODELS AND
SIMULATION TECHNIQUES

2.1. 2D + Slab Model

In this work, we express the interplanetary magnetic field as

B = B0ẑ + b(x, y, z), (1)

where B0ẑ is a constant mean field and b is the transverse
fluctuating part, which can be separated into two components, a
“slab” component that depends only on the z coordinate and a
“2D” component that depends only on the x and y coordinates.
Thus, b can be written as

b(x, y, z) = bslab(z) + b2D(x, y). (2)

Because ∇ · B = 0, we have ∇ · b2D = 0 and b2D =
∇ × [a(x, y)ẑ] for a scalar potential function a(x,y). If there
were only 2D fluctuations, the magnetic field lines would
exactly follow 2D flux surfaces defined by contours of constant
potential, but the addition of the slab component allows field
lines to diffuse away from the 2D flux surfaces.

This magnetic field model was motivated by the work
of Matthaeus et al. (1990), who found that the fluctuation
power of the solar wind is concentrated at wavevectors nearly
perpendicular and parallel to the mean magnetic field (see also
Dasso et al. 2005; Weygand et al. 2009). In addition to its use
in the study of dropouts, the two-component model has also
provided a useful description of solar wind fluctuations (Bieber
et al. 1996; Saur & Bieber 1999; Osman & Horbury 2007) and

the parallel transport of particles in interplanetary space (Bieber
et al. 1994; Shalchi et al. 2008). In our simulations, we set the
root mean square fluctuating field as b = 0.5B0 and the ratio of
slab energy to 2D energy as 20:80 (Bieber et al. 1994, 1996) so
that 〈b2〉slab = 0.05B2

0 and 〈b2〉2D = 0.2B2
0 .

2.2. Random-phase Fields

To numerically generate the fluctuating fields, we require a
Kolmogorov power spectrum of turbulence in the inertial region
of k-space. For the slab component, we can write

P slab
xx (kz) = P slab

yy (kz) = Cslab

[1 + (kzλ)2]5/6
, (3)

where Cslab is a normalization constant and λ is the parallel
coherence length, set to 0.02 AU. This spectral form yields a
Kolmogorov power law, k

−5/3
z , in the inertial range at higher kz,

and is independent of kz in the energy-containing range at lower
kz; such spectra have been found in observations of solar wind
fluctuations (Jokipii & Coleman 1968). The magnetic field in
the wavevector domain can be written as

bslab
x (kz) =

√
P slab

xx (kz)e
iφx (kz), (4)

where i is
√−1 and φx is a random phase that is independent for

each Fourier mode, varying from 0 to 2π . For the y-component,
we use

bslab
y (kz) =

√
P slab

yy (kz)e
iφy (kz). (5)
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Because of the use of random phases φx and φy , this can be
called a random-phase field.

Then, we use an inverse fast Fourier transform (FFT) to obtain
the fluctuating magnetic fields in real space. In our simulations,
we set the box length in the z-direction to Lz = 10,000λ, and
the number of grid points was Nz = 4,194,304. The field lines
are traced only to a few percent of the simulation box length
in order to avoid periodic effects. The power spectrum of the
random-phase 2D potential is

A(k⊥) = C2D

[1 + (k⊥�⊥)2]7/3
, (6)

where A(k⊥) is the power spectrum of a(x, y), defined as the
Fourier transform of the correlation function 〈a(r0)a(r0 + r)〉,
C2D is a normalization constant, k⊥ =

√
k2
x + k2

y , and �⊥
is a perpendicular coherence length, set to 0.03 AU (similar
to the value used by Ruffolo et al. 2003). This leads to an
omnidirectional power spectrum, E(k⊥), with a Kolmogorov
power law in the inertial range and a k2

⊥ dependence in the
energy-containing range as required for homogeneity (Ruffolo
et al. 2004; Matthaeus et al. 2007). The magnetic potential for
the 2D component in the wavenumber domain is

a(kx, ky) =
√

A(k⊥)eiφ(kx ,ky ), (7)

where φ is a random phase. We derived b2D
x (k) and b2D

y (k), and
used the FFT algorithm (Press et al. 1992) to perform the inverse
Fourier transform to obtain b2D(x, y) in the spatial domain box
lengths Lx = Ly = 40λ. The numbers of grid points were
Nx = Ny = 1, 024. An example of a 2D random-phase potential
function a(x,y) generated in this manner is shown in Figure 1(a).

2.3. 2D MHD Field

Random-phase models of magnetic fields encode the desired
power spectrum, e.g., for a turbulent plasma, and since the power
spectrum is the Fourier transform of the spatial correlation
function, the latter should be correctly treated as well, in the
ensemble average. However, random-phase models have some
physical deficiencies, especially in two or more dimensions.
Therefore, for the 2D magnetic field component, we have
developed a procedure for “processing” a random-phase field
according to MHD in two dimensions.

According to MHD, the magnetic pressure depends on b2, so
the turbulent flow will tend to make |b| more uniform. Thus,
the current j, which depends on ∇ × b, is reduced in most
locations, but remains at topological “defects” where b changes
in magnitude and/or direction. This topological structure is a
key feature of the flux tube viewpoint, and the topology requires
current cores in the interior and current sheets at the flux tube
boundary (Matthaeus & Lamkin 1986; Greco et al. 2009); these
will be discussed further in Section 3.1. Along the flux tube
boundary, the attraction of parallel current elements should
concentrate such currents into narrow regions, such as current
sheets with magnetic reconnection. Thus, the current sheets
should be envisioned as not uniformly spread over the flux tube
boundary but rather concentrated at narrow portions thereof.

A random-phase 2D field assumes independent Fourier modes
and therefore does not incorporate the tendency of |b| to be-
come more uniform and |j| to become more concentrated,
which require that many Fourier modes “conspire” to concen-
trate changes in the magnetic field and form coherent current
structures in localized regions.

In the solar wind, we expect that an initial fluctuation field,
e.g., from the solar source, should undergo substantial MHD
evolution before arriving at Earth. The dynamical age of the
solar wind at Earth orbit can be roughly estimated from

T

Tnl

= Cch

R/U

L/Z
, (8)

where T is the solar wind travel time from the Sun, Tnl is a
nonlinear scale time, specifically, the eddy turnover time at the
outer scale, Cch = 0.5 is a constant to account for cross-helicity
(Alfvénic) effects (see Hossain et al. 1996), R is the distance
from the Sun, U is the solar wind speed, L is the outer scale of
the turbulence, and Z is eddy velocity at the outer scale. Using
R = 1 AU and observations at 1 AU of U = 300–600 km s−1,
L = 0.01 AU (Weygand et al. 2009), and Z = 20–40 km s−1

(see Smith et al. 2001 for observations of the normal component
of Z2), it can be estimated that the solar wind experiences ∼2–
17 nonlinear scale times on its way to Earth orbit. Because
there is continual energy input (e.g., Matthaeus et al. 1998), the
solar wind turbulence is fully developed at 1 AU, and the power
spectrum is observed to be close to a Kolmogorov form (Jokipii
& Coleman 1968).

In the present work, we model such turbulent evolution by
starting from an initial random-phase 2D field, which incorpo-
rates a turbulent power spectrum. Then, a 2D pseudospectral
incompressible MHD code (see Wan et al. 2009) is employed
to evolve the magnetic configuration according to the following
equations of evolution,

∂ω

∂t
+ v · ∇ω = b · ∇j + ν∇2ω

∂a

∂t
+ v · ∇a = η∇2a, (9)

in terms of the plasma vorticity ω = (∇ × v) · ẑ, plasma
velocity v, current j = (∇ × b) · ẑ, molecular viscosity ν, and
resistivity η. The simulation has 1024 × 1024 spatial resolution
and a magnetic Reynolds number of 640 at the largest scales.
Because 2D MHD simulations do not include energy input to the
turbulence, and use a lower Reynolds number than solar wind
turbulence, their turbulent energy decays more quickly than that
in the solar wind. Here, the simulation is run from t = 0 to
Tnl, which is sufficient for developing nonlinear structures (i.e.,
phase correlations of Fourier components) but not so long as to
severely distort the power spectrum away from a Kolmogorov
form. At t ∼ Tnl , the decaying turbulence has reached the peak
of its dissipation and most closely resembles steady-driven fully
developed turbulence as expected in the solar wind. We then
obtain the 2D MHD potential, magnetic field, and current.

2.4. Field Line Tracing

After obtaining the magnetic field at each grid point of the
simulation box, magnetic field line trajectories were found by
solving the coupled equations

dx

dz
= b2D

x (x, y) + bslab
x (z)

B0
,

dy

dz
= b2D

y (x, y) + bslab
y (z)

B0
(10)

to obtain x(z) and y(z). We solve Equation (10) using a fourth-
order Runge–Kutta method with an adaptive step size (Press
et al. 1992). The magnetic field at each position is obtained by
linear interpolation (slab component) and bilinear interpolation
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(2D component). Then, 10,000 field lines from random initial
(x, y) locations within a circle of radius 0.1 AU centered at
(0.4 AU, 0.4 AU) are traced from z = 0, corresponding to the
particle source, to a distance of z = 1 AU. We then examine the
distribution of (x, y) locations, especially the sharp gradients in
the density of field lines connected to the source, as an indicator
of where dropouts can be observed as the solar-corotating
field lines pass the observer. As a check, we have also traced
particle trajectories by solving the Newton–Lorentz equations
as function of time, using similar techniques (for details, see
Tooprakai et al. 2007).

2.5. Local Trapping Boundaries

Previous computer simulations that traced turbulent magnetic
field lines, as described above, have found sharp gradients in the
density of field lines connected to the source as a function of x
and y (Ruffolo et al. 2003; Zimbardo et al. 2004). The proposed
physical mechanisms are (1) temporary topological trapping
along flux surfaces of constant 2D potential a(x, y), with eventual
diffusive escape due to the slab fluctuations (Ruffolo et al. 2003),
and (2) suppressed diffusive escape where the 2D field is strong
(Chuychai et al. 2005). Combining the two ideas leads to the
concept of LTBs, i.e., 2D flux surfaces where the 2D field is
particularly strong (Chuychai et al. 2007).

LTBs are contours of constant potential a in the x–y plane
whose average 2D fluctuation energy is maximized with respect
to neighboring contours, i.e.,

Maximize : |b2D|2av = 1

L

∮
|b2D(x, y)|2d�, (11)

where |b2D| is the local strength of the 2D magnetic field, d�
follows an equipotential contour, and L is the length of the
contour. While any flux surface can cause topological trapping,
LTBs possess a local maximum in |b2D|2av, which is related to
the suppression of slab diffusion, so they define flux surfaces
that field lines cross with particular difficulty. As such, they are
likely to coincide with sharp gradients in the density of field
lines connected to the source, i.e., dropout features. LTBs were
indeed found to play this role in simulations using random-phase
2D+slab magnetic fields (Chuychai et al. 2007). The present
work examines whether they still serve as good indicators of
dropout features when using more physically realistic 2D MHD
fields, or whether intense field regions or current sheets provide
better indicators.

We find LTBs by the following procedure. We begin with the
results of the 2D MHD procedure for the magnetic potential
a(x,y) at each to 1024 × 1024 grid points, and trace contours
of constant potential. We consider square cells between grid
points, and the cell boundaries are lines between neighboring
grid points. Values of a are stepped upward or downward from
zero with a constant spacing of 0.05 in units of B0λ. For a given
value of a, the tracing of equipotential contours uses linear
interpolation along the cell boundary to find where contours
exit and enter each 2D cell. For simplicity, contour segments
within a cell are taken to be straight lines. When there are
two entrance points and two exit points for the same cell, the
pairing of entrance and exit points is based on the values of a
at the four surrounding grid points, in a manner consistent with
bilinear interpolation of a within the cell. Segments in adjacent
cells are then linked to form closed contours. (When identifying
the boundaries of the simulation region with periodic boundary
conditions, there are no open contours.)

For each contour, the integration in Equation (11) is approx-
imated by summing over segments within cells, taking the in-
tegral along each segment to be represented by |b2D|2 at the
segment center times the segment length. We plot |b2D|2av for
each contour line, and visually compare these values between
neighboring contours. Contours that have a maximal value com-
pared with neighboring contours are identified as LTBs.

3. RESULTS AND DISCUSSION

3.1. Characteristics of the 2D MHD Field

Figure 1 shows an example of the effects of the 2D MHD
procedure. Figure 1(a) shows contours of equal potential a(x,
y) for a 2D random-phase field. When adding the mean field
B0ẑ, the combined magnetic field twists along flux surfaces
defined by the contours of constant a. This 2D random-phase
field was used as the initial configuration for a 2D MHD
procedure, and Figure 1(b) shows the equipotential contours
for the resulting 2D MHD field. While the larger-scale turbulent
features remain similar, the most obvious difference is that the
random-phase contours are more irregular. These are smoothed
in the 2D MHD field because irregularities in magnetic pressure
are relieved by the fluid flow, tending to produce a smoother
field magnitude |b|. This is consistent with previous findings
that MHD turbulence leads to the formation of many flux tubes,
which relax locally at every stage of evolution while interacting
with one another at their boundaries (Servidio et al. 2008).
A related effect is that for this 2D MHD field, the spacing
between contours, which indicates |b|, is more uniform in many
places.

Nevertheless, some variations in b2 remain in the 2D MHD
model, as shown in Figure 1(c). Note the tendency of regions
with strong b2 to be somewhat aligned with the equipotential
contours. This is not particular to the 2D MHD procedure, but is
rather related to the solenoidal property ∇ · b = 0, or in Fourier
space, k · b = 0. Variations in the field are also indicated by
the current j. For the 2D MHD field, as discussed earlier, the
current can be highly concentrated in narrow current cores and
current sheets (Figure 1(d)). We will discuss these in more detail
shortly.

A comparison of the power spectra of the 2D random-phase
and 2D MHD models is presented in Figure 2. Here, we plot
the omnidirectional power spectra, E(k⊥), as estimated from
|b2D

x |2 +|b2D
y |2 summed over Fourier modes in all directions with

k⊥ near the value of interest. Both spectra are normalized to the
same energy 〈b2〉2D, which is the integral of the power spectrum,
and magnetic fields are expressed in units of B0. By construction,
the 2D random-phase model has a power spectrum that rises
with k⊥ in the energy-containing range (at low k⊥) and obeys
the Kolmogorov law E ∝ k−5/3 in an inertial range at higher k⊥.
The rollover at and above k⊥ ≈ 4000 is an artifact of the limited
extent of the FFT grid in some directions in k-space. The 2D
MHD spectrum is steeper at high k⊥ than the 2D random-phase
spectrum. This is a manifestation of the decay of turbulence due
to MHD dissipation and the absence of energy input (driving).
Note that the turbulent cascade proceeds faster for higher k⊥, and
the 2D MHD simulation is run for a fixed time duration, so only
the high-k⊥ portion of the spectrum is significantly eroded by the
turbulent cascade. More generally, a spectrum that steepens with
increasing k⊥ is associated with intermittency, which in this
case is associated with decaying turbulence but could also be
associated with steady-state dissipation or other effects (Frisch
1995, p.139). Because of the overall normalization, the 2D MHD
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Figure 2. Omnidirectional power spectra of 2D random-phase and 2D MHD
turbulent magnetic field models, normalized to the same total energy. After
the fixed-time 2D MHD procedure, the high-wavenumber portion of the
spectrum has been eroded by the turbulent cascade, which affects the overall
normalization.

spectrum at low k⊥ becomes higher than the 2D random-phase
spectrum.

Figure 3 shows surface plots of various quantities for the
2D random-phase and 2D MHD models; the vertical scales
are for magnetic fields in units of B0 and lengths in units of
λ. In the 2D random-phase models, many wave modes are
superimposed with appropriate amplitudes but random phases.
This leads to random, irregular structures. It is seen that the
magnetic potential, a(x, y), is much smoother in the 2D MHD
model because of the tendency of magnetic pressure to smooth
variations in b2. Similarly, the 2D MHD magnetic energy b2 is
seen to typically vary less sharply (over longer distance scales)
than the 2D random-phase magnetic energy.

Variations in the magnetic field can be expressed in terms
of the current, j = ∇ × b, which for the 2D fields is exactly
along the z-direction, so we will simply use j to refer to the z-
component. The 2D MHD procedure follows the scalar magnetic
potential a in Fourier space, and the current density is computed
algebraically in k-space. For the 2D random-phase field, we
infer the current in the spatial domain by finite differencing,
which we call jFD.

For comparison purposes, Figures 3(e) and (f) show jFD in
real space, for both fields. In most locations, the current is
greatly reduced in the 2D MHD model because of the tendency
to smooth variations in the field magnitude. This is related
to rapid relaxation and suppression of nonlinearity at most
locations (Servidio et al. 2008). However, insofar as the 2D
MHD procedure is not continued long enough for all magnetic
fields to reconnect and change topology completely, strong
persistent current features are generated in association with
islands and at certain topological defects. These can be identified
as current cores or current sheets (see Figure 2 of Kittinaradorn
et al. 2009; see also Greco et al. 2009). At these particular
locations, the nonlinearity may be very strong even though
it is suppressed in the global average (Servidio et al. 2008).

Current cores are found at O-points, i.e., maxima or minima
in the potential, where the magnetic field goes to zero; this is
a topological defect where the magnetic pressure b2 cannot be
uniform. In the flux tube view, current cores are at the centers
of flux tubes. Current sheets are typically found at X-points,
i.e., saddle points in the potential, where the field again goes to
zero. In particular, when two regions of plasma with oppositely
directed magnetic fields flow toward each other, the magnetic
field lines can reconnect in a thin boundary region (Sweet 1958;
Parker 1963a; Petschek 1964). Such sharp, localized changes in
b correspond to the strongest currents in the 2D MHD model,
dominating the visual features in Figures 1(d) and 3(f).

Note that a view of distinct, independent flux tubes with
sharp boundaries would seem to require a sharp change in b and
a strong current j all around the flux tube boundaries. However,
in our 2D MHD results, the current sheets are found to be
quite localized, encompassing only a small fraction of a flux
surface (see Figure 1(d)), which is physically reasonable given
the attraction of parallel current structures. This is also a feature
of modern models and simulations of magnetic reconnection
(Priest & Forbes 2000). In the 2D MHD model, one could
say that neighboring flux tube structures are coordinated to
arrange a concentration of current in current sheets of limited
extent, which to some extent contradicts the view of independent
flux tubes with sharp boundaries. Furthermore, if the boundary
of a “flux tube” is defined as a flux surface that includes a
current sheet, one can have concentric flux tube boundaries, and
boundaries that along most of their surface have no sharp field
gradients.

The results shown in Figure 3 are consistent with the sce-
nario described by Matthaeus & Montgomery (1980). 2D MHD
exhibits a dual cascade of magnetic excitation to larger scales
(at lower wavenumbers) and current density to smaller-scale,
coherent structures (at higher wavenumbers). Such phase co-
herence of Fourier modes cannot be obtained in random-phase
models.

It is interesting to quantitatively confirm that the 2D random-
phase and 2D MHD models have different statistical distribu-
tions of quantities related to the magnetic field. For the simulated
distributions of magnetic potential, magnetic field, and current,
we have determined the fourth moment (sometimes called “kur-
tosis” or “flatness”) and, as a check, the sixth moment as well
(Table 1). The fourth moment is divided by the variance squared
to yield a dimensionless quantity, which would be 3 for a Gaus-
sian distribution. Similarly, the sixth moment is divided by the
variance cubed, which would be 15 for a Gaussian distribution.
For a distribution with weaker tails than a Gaussian, the normal-
ized fourth and sixth moments would be lower than 3 and 15,
respectively, and for a distribution with stronger tails they would
be higher. The uncertainty of our determination can be estimated
by comparing values for bx and by for all models. These should
be the same because the models are axisymmetric. From these,
we estimate uncertainties of about 0.08 and 1.19 for the fourth
and sixth moments, respectively.

In Table 1, for the slab and 2D random-phase fields, all the
quantities have fourth and sixth moments that are consistent
with Gaussian values. This is perhaps not surprising because
random-phase quantities represent the superposition of a large
number of independent Fourier modes, so the resulting quantity
should have a Gaussian distribution by the central limit theorem.
On the other hand, some quantities in the 2D MHD model are
significantly different from Gaussian values. The distribution of
potential values is still consistent with a Gaussian distribution,
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(a)

(c)

(e) (f)
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Figure 3. Comparison of quantities pertaining to two models of 2D magnetic turbulence, 2D random-phase (left panels) and 2D MHD (right panels): (a, b) Magnetic
potential, a. (c, d) Magnetic energy, b2. (e, f) j2

FD , where the current j2D is determined from finite differencing of b. In the more physical 2D MHD model, a is
smoother, b varies more gradually, and j is concentrated in narrow current sheets.

Table 1
Moments of Various Quantities for Magnetic Field Models

Model Quantity Fourth Momenta Sixth Momentb

Slab random-phase bx 3.02 15.43
by 2.95 14.36

2D random-phase a 3.04 14.51
bx 3.06 15.94
by 2.93 13.98

jFD
c 3.01 15.18

2D MHD a 3.04 14.50
bx 2.76 12.37
by 2.67 11.02

jFD
c 7.65 331.28

j 6.80 242.05

Notes.
a Normalized to second moment squared, i.e., 〈b4

x〉/(〈b2
x〉)2. The value would

be 3 for a Gaussian distribution. Italics indicate values significantly different
from 3.
b Normalized to second moment cubed, i.e., 〈b6

x〉/(〈b2
x〉)3. The value would

be 15 for a Gaussian distribution. Italics indicate values significantly different
from 15.
c FD indicates finite differencing.

perhaps because the main effect of the 2D MHD procedure on
a is to smooth small-scale irregularities. However, the magnetic
fields have fourth and sixth moments that are significantly
lower than Gaussian values, apparently due to the physical
process that the magnetic pressure becomes more uniform on
small scales. The currents exhibit the strongest deviations from
Gaussianity. The reduction of the current in most places but
strong concentration in current sheets leads to strongly enhanced
non-Gaussian tails in the distribution (see also Wan et al. 2009).
While the current j derived from Fourier modes has lower
moments than that derived from finite differencing of the field,
both have moments that are much higher than Gaussian values.
The non-Gaussian 2D MHD distributions of bx, by, and j arise
from MHD and can be understood physically, so these are taken
to be more physically reasonable than the Gaussian distributions
of random-phase fields.

Here, we have characterized the physically attractive features
of the 2D MHD model, and in particular how it incorporates
elements of the flux tube view. Next, we review the mechanisms
that have been identified as underlying dropout features, and
consider whether the physically realistic features of 2D MHD
simulations should actually affect those mechanisms.
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3.2. Reasons for Dropout Features

If one accepts that SEP dropout features are associated with
the filamentation of magnetic connection to the particle source
(Mazur et al. 2000; Giacalone et al. 2000), then the next question
is why such filamentation occurs with sharp boundaries, given
that uniform field line diffusion over 1 AU would be expected
to lead to a substantial spread in magnetic connection (Ruffolo
et al. 2003, 2004).

One specific mechanism, developed in the context of the
2D+slab magnetic field model, is topological trapping of field
lines along flux surfaces of constant 2D potential a(x, y), with
eventual diffusive escape due to the slab fluctuations (Ruffolo
et al. 2003). In essence the mean field and 2D field are viewed
as the main determinants of field line motion, along such 2D
flux surfaces, with slab fluctuations as a perturbation; this
approach is justified by the minor (15%–20%) contribution of
slab fluctuations to the total fluctuation energy (Bieber et al.
1994, 1996).

An additional mechanism is the suppression of diffusive es-
cape when the 2D field is strong or irregular (Chuychai et al.
2005, 2007). This mechanism has also been demonstrated for
particle orbits (Tooprakai et al. 2007). However, the demon-
strations of both mechanisms for turbulent fields have so far
employed random-phase simulations.

While it is clearly more realistic to use 2D MHD fields in
place of 2D random-phase fields, it is not clear whether this will
actually influence the mechanisms for dropout features. In the
flux tube view, it has been proposed that field lines are confined
within small-scale flux tubes (Borovsky 2008; which is indeed
largely the case for large-scale flux ropes, e.g., in magnetic
clouds). However, in our 2D MHD simulation results, flux tube-
like structures are found to have weak variations in magnetic
fields across most of their “boundaries.” Topological trapping
applies to any flux surface, and it is not clear that flux surfaces
that contain current sheets over narrow portions should trap field
lines more effectively.

According to Chuychai et al. (2007), the flux surfaces that
trap field lines most effectively are those with high 2D magnetic
energy, a key factor in the suppression of slab diffusive escape,
i.e., the LTBs. (The other key factor, the irregularity of the
2D equipotential contour, is not considered in the definition
of LTBs, and is indeed less important when using a 2D MHD
model where such irregularity is greatly reduced; see Figure 1.)
The LTBs are not necessarily found at boundaries of flux tube-
like structures. While it is physically more realistic to use a 2D
MHD model that allows for current sheets, it is not clear that
the current sheets should play a major role in field line trapping,
as has been expected in the flux tube view (see also Chollet &
Giacalone 2008).

3.3. Associations with Dropout Features

The observed lack of a strong association between magnetic
field changes (such as current sheets) and dropout features has
been expressed as a criticism of explanations of dropouts in
terms of turbulence (Chollet & Giacalone 2008), though it
actually poses more of a challenge to the flux tube viewpoint.
Previous turbulence models expected dropout features to occur
along LTBs (see Section 2.5), which encapsulate the two
identified mechanisms for field line trapping, but those models
did not allow for strong current sheets and are not able
to directly address such observations. We note that Mazur
et al. (2000) reported a general lack of an association with

magnetic or plasma signatures. This can be taken to rule out
a strong association between the magnetic field intensity and
dropout features, and in the present work, we examine whether
turbulence models predict such an association.

Our simulation results for a 2D MHD model, which does
allow for current sheets, are shown in Figure 4. Given the mean
magnetic field along ẑ and two-component 2D+slab magnetic
turbulence, we have traced 10,000 magnetic field lines from
initial locations within a circle of radius 0.1 AU. The scatter
plots in Figure 4 show (x, y) locations of the same field lines
after tracing them for a distance z of 1.0 AU. We also traced
trajectories for protons of various energies. Up to ∼1 GeV,
the maps of where particle and field line trajectories intersect
z = 1 AU are very similar. (Note that observations of dropouts
have typically been for particles below ∼1 MeV/nucleon.)
Thus, we conclude that the locus of field line trajectories is
a good proxy for where the SEPs will travel on their way out
from the source. The sharp gradients in the density of points
in Figure 4 are locations where a spacecraft traversed by solar
wind with such a magnetic structure would observe dropouts.

In Figure 4(a), the scatter plot of field line loca-
tions is superimposed with contours of equal potential
a(x, y) as in Figure 1(b), for a regular spacing in a.
It is clear that the boundaries of field line connectiv-
ity are related to the equipotential contours, i.e., 2D
flux surfaces. This is evidence for topological trapping
(Ruffolo et al. 2003). Though “islands” or flux tube-like struc-
tures are clearly seen, from this plot alone, it is not clear what
determines the location of dropout features. In several loca-
tions, they are clearly not associated with the visual “boundary”
of an island (e.g., at the coordinates (0.34,0.43), (0.40,0.50), and
(0.47,0.39)).

Figure 4(b) superimposes the scatter plot with LTBs, par-
ticular flux surfaces where |b2D|2av has a maximum for the 2D
component (see Equation (11)). In numerous locations (includ-
ing the specific locations mentioned above), the LTBs correctly
identify which flux surfaces serve as boundaries in field line
connectivity. Physically, these flux surfaces are particularly dif-
ficult for field lines to penetrate because of the suppression
of slab diffusion across contours where the 2D field is strong
(Chuychai et al. 2005, 2007). In many cases, field lines from the
initial source region remain present (or absent) on both sides
of an LTB, so not all locations along LTBs are associated with
dropouts. Likewise, not all sharp boundaries in field line con-
nectivity are associated with LTBs (they can also be associated
with the boundary of the initial source region, as deformed by
the mapping to 1 AU), but on the whole there is a reasonably
good association.

Note that LTBs are often concentric, and thus do not serve
as proper boundaries of islands or flux tubes. They are quite
specific to field line connectivity and related phenomena such as
dropouts. They are not space filling, in the sense that some field
lines can travel out from the injection region without having to
cross an LTB. This is an important requirement for consistency
with the high rate of diffusion observed over long timescales
(Kaghashvili et al. 2006).

We also examine whether the simulation results indicate
an association with strong turbulent magnetic fields. Such an
association has not been obvious in observations (Mazur et al.
2000). Here, we specifically examine an association with |b2D|2
(Figure 4(c)). In the simulation results, there is a degree of
association, notably near the coordinates (0.34,0.43), but it
is substantially weaker than the association with LTBs. The
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Figure 4. For a mean magnetic field along ẑ and two-component magnetic turbulence, we trace 10,000 magnetic field lines from initial locations within a circle of
radius 0.1 AU. These scatter plots show (x, y) locations of field lines after a distance z of 1.0 AU, superimposed with indications of (a) contours of constant potential
a(x,y) at equal intervals Δa, (b) LTBs (contours; green), (c) b2 (red), and (d) j2 (blue). Sharp gradients in magnetic connection to the source, i.e., dropout features, are
seen to be associated frequently with LTBs, sometimes with large b2, and infrequently with current sheets.

reason is that topological trapping naturally occurs along an
entire flux surface, whereas only some portions of an LTB have
high 2D fields. In spacecraft observations, variations in the 2D
field strength are not readily isolated from other magnetic field
fluctuations. Thus, a moderate degree of association between
dropout features and |b2D|2 may be difficult to observe in the
interplanetary medium, where there are independently varying
slab fluctuations, and the mean field itself varies over large
scales.

Finally, Figure 4(d) shows that dropout features are typically
not associated with the current sheets in this model. Thus,
the observed lack of association between dropouts and current
sheets or sharp magnetic field changes should not be construed
as in conflict with turbulence models.

It is perhaps vexing that the physical mechanisms for field
line trapping result in a better association with LTBs, which
are mathematical constructs and difficult to identify in magnetic
field observations along a one-dimensional spacecraft trajectory,
than with current sheets, which are relatively easy to identify.
However, nature is not obliged to provide easy diagnostics.

4. CONCLUSIONS

Recent theoretical progress to explain SEP dropouts has
identified mechanisms for sharp changes in field line connection
from a source to an observing region at a distance of 1 AU, in
the context of random-phase turbulence models. A viewpoint
involving “spaghetti” of independent flux tubes has also been
proposed to explain various discontinuities in solar wind plasma
properties.

Here, we improve a random-phase turbulence model by using
a 2D MHD procedure. The 2D MHD model contains narrow

current sheets and structures reminiscent of flux tubes, with
non-Gaussian statistics for b and j. To the extent that flux tubes
can be defined, they are not independent but rather coordinated
with their neighbors to avoid strong changes in magnetic field
along their boundaries, except at current sheets of narrow extent.

Our simulations indicate that magnetic field line trajectories
to 1 AU serve as good proxies for arrival locations of protons
up to 1 GeV in energy. Thus, sharp changes in magnetic
connection to a localized source are a proxy for SEP dropout
features. We identified LTBs as 2D flux surfaces with maximal
|b2D|2av compared with neighboring flux surfaces. Our simulation
results indicate that dropout features are frequently associated
with LTBs, sometimes associated with strong 2D magnetic
fluctuations, and only infrequently associated with current
sheets. The mechanisms identified in the context of random-
phase two-component fields can still explain dropout features
with the 2D MHD model. In sum, we have developed a more
realistic model of turbulent fluctuations in the solar wind,
including current sheets, which is consistent with the poor
observed association between dropout features and intense
magnetic fields or currents.
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