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ABSTRACT

In astrophysical plasmas, magnetic field lines often guide the motions of thermal and non-thermal particles. The
field line random walk (FLRW) is typically considered to depend on the Kubo number R = (b/B0)(�‖/�⊥) for
rms magnetic fluctuation b, large-scale mean field B0, and parallel and perpendicular coherence scales �‖ and �⊥,
respectively. Here we examine the FLRW when R → ∞ by taking B0 → 0 for finite bz (fluctuation component
along B0), which differs from the well-studied route with bz = 0 or bz � B0 as the turbulence becomes quasi-two-
dimensional (quasi-2D). Fluctuations with B0 = 0 are typically isotropic, which serves as a reasonable model of
interstellar turbulence. We use a non-perturbative analytic framework based on Corrsin’s hypothesis to determine
closed-form solutions for the asymptotic field line diffusion coefficient for three versions of the theory, which are
directly related to the k−1 or k−2 moment of the power spectrum. We test these theories by performing computer
simulations of the FLRW, obtaining the ratio of diffusion coefficients for two different parameterizations of a field
line. Comparing this with theoretical ratios, the random ballistic decorrelation version of the theory agrees well
with the simulations. All results exhibit an analog to Bohm diffusion. In the quasi-2D limit, previous works have
shown that Corrsin-based theories deviate substantially from simulation results, but here we find that as B0 → 0,
they remain in reasonable agreement. We conclude that their applicability is limited not by large R, but rather by
quasi-two-dimensionality.
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1. INTRODUCTION

In many astrophysical plasmas, magnetic field lines play a
key role in organizing the transport of both the bulk plasma
and energetic particles. In many cases, the magnetic field is
highly turbulent, which leads to a random walk of magnetic
field lines and diffusion of particles distributions both along
and perpendicular to the mean field (Jokipii 1966; Jokipii &
Parker 1968). These processes underlie numerous astrophysical
phenomena, such as the transport of solar energetic particles to
Earth (Meyer et al. 1956), solar modulation of Galactic cosmic
rays (Rao 1972; Moraal 1976), diffusive shock acceleration
(Drury 1983), propagation of cosmic rays and diffuse gamma-
ray emission in the Galaxy (Ackermann et al. 2012), and
possibly the “moss” emission in the solar transition region
(Kittinaradorn et al. 2009).

Theoretical concepts of the magnetic field line random walk
(FLRW) have mostly been developed in studies that consider the
rms fluctuation b to be much weaker than the large-scale field
B0 (Isichenko 1991a, 1991b) or for transverse turbulence with
b ⊥ B0, i.e., bz = 0 where ẑ is along B0 (see Matthaeus et al.
1995; Shalchi 2009; Ruffolo & Matthaeus 2013, and references
therein). In these cases, characterized by bz � B0, there is
a scaling relation by which the asymptotic field line diffusion
coefficient depends on the dimensionless ratio (b/B0)(�‖/�⊥),
where �‖ and �⊥ are length scales parallel and perpendicular
to B0, respectively (Ghilea et al. 2011). For some magnetic
fluctuation models, such as the 2D+slab model (Matthaeus
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et al. 1995), the parallel and perpendicular correlation scales
are infinite, so we use the finite coherence scales of individual
components for the scaling relation (Ghilea et al. 2011; Snodin
et al. 2013a). When the correlation scales are well defined,
�‖ and �⊥ can be set to the correlation scales, and the above
dimensionless ratio is identified with the Kubo number, R (Kubo
1963). For R � 1, or fluctuations dominated by wave vectors
nearly parallel to B0, which can be described as “slab” or
quasi-one-dimensional fluctuations, all accepted theories and
computer simulation results agree with the quasilinear theory
of Jokipii & Parker (1968), with D = (b/B0)2(λc/2) for the
parallel correlation scale λc.

In contrast, for fluctuations with bz � B0 and R � 1, there
is no general consensus on how to model the FLRW. Such fluc-
tuations are quasi-two-dimensional (quasi-2D), dominated by
wave vectors nearly perpendicular to B0. In this case, there are
strong trapping effects in which some field lines are trapped in
topological structures either temporarily or permanently. Such
trapping is associated with conservation of the flux function (for
purely 2D fluctuations) or approximate conservation of a related
quantity (for quasi-2D fluctuations), leading to (x, y) trajecto-
ries that are nearly closed and periodic. Corrsin’s hypothesis
(Corrsin 1959), a theoretical approximation to be described later
in this work, is quite accurate at low Kubo number and even up
to R ∼ 10 (Snodin et al. 2013b), but becomes less accurate
at higher R because it does not include the “memory” effect
of trapping (Vlad et al. 1998; Ruffolo et al. 2008). Other pro-
posed theories have been based on percolation (Gruzinov et al.
1990) or decorrelation trajectory methods (Vlad et al. 1998).
None have been conclusively shown to accurately model the
asymptotic diffusion coefficient D at very large R values.
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The physical reason for the change in FLRW from the quasi-
linear regime (at R � 1) to the quasi-2D regime (R � 1)
is that the former has “extrinsic” decorrelation, where the
magnetic field changes (decorrelates) because the mean field
carries the field line across domains of size ∼�‖ and the
latter has “intrinsic” decorrelation, where the field line crosses
domains of size ∼�⊥ due to its own random walk. In theories
based on Corrsin’s hypothesis, for situations with bz � B0,
this distinction results in D ∼ (b/B0)2�‖ for the quasilinear
regime with extrinsic decorrelation and D ∼ (b/B0)�⊥, known
as “Bohm diffusion,” for the quasi-2D regime with intrinsic
decorrelation (Matthaeus et al. 1995; Ruffolo et al. 2004).
However, a random walk with intrinsic decorrelation can be
subject to trapping effects, especially in a quasi-2D regime
where the projected 2D trajectory is topologically constrained
to a nearly closed path (Ruffolo et al. 2008). This leads to the
failure of Corrsin’s hypothesis in the quasi-2D limit and poses
a continuing challenge to other theories as well.

In the present work, we examine a different route to the limit
of R = (b/B0)(�‖/�⊥) → ∞: instead of taking �‖/�⊥ → ∞
for finite b/B0 (the quasi-2D limit), we examine the limit of
B0 → 0 for finite �‖/�⊥. Physically, when there is little or no
large-scale field, there is no preferred direction and it is natural to
consider the turbulence to be isotropic in three-dimensional (3D)
wave number space. Isotropic 3D turbulence with no mean field
provides a reasonable description of magnetic fluctuations in the
interstellar medium of our Galaxy, which has a well-developed
turbulent cascade (Armstrong et al. 1995) and a fluctuation
field of the same order of magnitude as a Galactic field that
itself reverses on larger scales (Minter & Spangler 1996) and
might be considered to have an average value near zero. To our
knowledge, the FLRW has not previously been examined for this
case. For basic understanding of FLRW theory, B0 = 0 is a case
of infinite Kubo number with purely intrinsic decorrelation that
is not quasi-2D. Without an analog to a conserved flux function,
this case of isotropic 3D turbulence with zero mean field may
not exhibit the strong topological trapping of the quasi-2D limit,
although three-dimensionality introduces new possibilities for
trapping, e.g., in closed magnetic structures. Here we consider
how to parameterize the FLRW in the absence of a large-scale
field and examine how the existing theoretical concepts for
bz � B0 should scale for the case of low B0. We then develop
analytic theories for asymptotic field line diffusion coefficients
based on Corrsin’s hypothesis. We also perform direct computer
simulations of isotropic turbulence with no mean field and trace
individual field lines from random initial locations. An example
of one such field line is shown in Figure 1. From an ensemble
of such field lines, we computationally determine the diffusion
coefficient and compare with results from the analytic theories.

2. DESCRIPTIONS OF FIELD LINE DIFFUSION

While this study will focus on isotropic turbulence with zero
mean field, to relate our results to the previous literature, it is
instructive to first examine a more general magnetic field given
by B = B0ẑ + b(x, y, z). If the magnetic fluctuation b has a
finite correlation length, then the FLRW is expected to exhibit
diffusive behavior. We now have a choice of how to parameterize
the diffusive process.

In the cases of transverse turbulence, in which the magnetic
fluctuations are always perpendicular to the mean field, it is
natural to describe the perpendicular (x, y) motion of a field
line as a function of the coordinate along the mean field, z. Such
a description has also been used for 3D turbulence in the case

Figure 1. Example of a magnetic field line in a realization of isotropic turbulence
with a zero mean field. We use statistics from an ensemble of such random walks
to determine the field line diffusion coefficient and compare with theoretical
expectations.

that bz � B0 (e.g., Jokipii & Parker 1968). Then the field line
trajectory is described by

dx

dz
= bx

B0

dy

dz
= by

B0
(bz � B0), (1)

where, for convenience, we set x = y = 0 at z = 0. In
an astrophysical plasma, there is typically a finite coherence
scale and the distribution of the displacement (x, y) exhibits
asymptotic diffusion at large z. In, say, the x direction, the
asymptotic diffusion coefficient is limz→∞〈x2〉/(2z) and a
running diffusion coefficient can be defined as (1/2)d〈x2〉/dz.

However, the present study focuses on the case of isotropic
3D turbulence with no mean field, in which case we should
avoid special treatment of any coordinate. Indeed, with turbulent
fluctuations that are both positive and negative in all directions,
the field line trajectory moves back and forth in each direction,
so for a given z there may be multiple points in the x–y plane on
the same field line. Thus functions such as x(z) and y(z) may not
be single-valued, and the z coordinate (or any other Cartesian
coordinate) cannot be used to parameterize the field line. In this
section, we consider parameterizations that can be used for any
value of B0, even B0 = 0.

One parameterization describes the motion in each coordinate
as a function of the arclength s along the field line, with

dx

ds
= bx

B

dy

ds
= by

B

dz

ds
= B0 + bz

B
, (2)

where B ≡
√

b2
x + b2

y + (B0 + bz)2. This can also be written as

dx

bx

= dy

by

= dz

B0 + bz

= ds

B
= dτ, (3)

so that the same field line can also be described in terms of a
parameter τ defined by dτ = ds/B:

dx

dτ
= bx

dy

dτ
= by

dz

dτ
= B0 + bz. (4)
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We find this parameterization to be more convenient for analytic
calculations and more conducive to theoretical insight. In terms
of s, we can define diffusion coefficients by

Dx(s) ≡ 1

2

d〈x2〉
ds

Dy(s) ≡ 1

2

d〈y2〉
ds

Dz(s) ≡ 1

2

d〈z2〉
ds

. (5)

In terms of τ , we define

Dx(τ ) ≡ 1

2

d〈x2〉
dτ

Dy(τ ) ≡ 1

2

d〈y2〉
dτ

Dz(τ ) ≡ 1

2

d〈z2〉
dτ

.

(6)
We note that the relationship between τ and s depends on the
local magnetic field along the field line trajectory. As an aside,
note that Equations (4) describe streamlines in a fluid if the
magnetic field B is replaced by a velocity field v and τ is replaced
by time.

Previous work on the diffusive FLRW has identified three
types of diffusion: quasilinear, Bohm, and percolation/trapping.
First, consider the case where bz is negligible and we use
dimensionless variables x ′ = x/�⊥, y ′ = y/�⊥, and z′ = z/�‖.
Then Equations (1) become

dx ′

dz′ = bx

B0

�‖
�⊥

= bx

b
R

dy ′

dz′ = by

B0

�‖
�⊥

= by

b
R (bz � B0), (7)

where in this context we may define b ≡
√

〈b2
x + b2

y〉. Most

seminal work on the FLRW considered this case (e.g., Jokipii
& Parker 1968; Kadomtsev & Pogutse 1979; Isichenko 1991a,
1991b; Matthaeus et al. 1995). If the fluctuations are axisym-
metric, so that bx and by are statistically identical, or if they
remain comparable and scale with b, then the dimensionless
diffusion coefficients depend only on R. For nonaxisymmet-
ric turbulence, dimensionless diffusion coefficients depend on
both R and the rms value of bx/b (e.g., Zimbardo et al. 2000;
Ruffolo et al. 2006; Weinhorst et al. 2008). For the Kubo number
dependence, we may have limz′→∞〈x ′2〉/(2z′) ∼ Rγ , including
the cases

γ =
{

2 for quasilinear diffusion
1 for Bohm diffusion
0.7 for percolative diffusion

(8)

(Jokipii & Parker 1968; Salu & Montgomery 1977; Isichenko
1991b). All authors agree that quasilinear diffusion applies at
R � 1 (except that Ruffolo et al. (2006) expect Bohm diffusion
for cases of extreme nonaxisymmetry) and the other types of
diffusion have been proposed for R � 1, along with some
theories predicting that γ depends on the magnetic fluctuation
model and its Eulerian correlation function (e.g., Vlad et al.
1998; Vlad & Spineau 2014). In any case, for the values in
Equation (8), the dimensional asymptotic diffusion coefficients
for the case of negligible bz are

Quasilinear :
〈x2〉
2z

∼ b2

B2
0
�‖

Bohm :
〈x2〉
2z

∼ b

B0
�⊥

Percolative :
〈x2〉
2z

∼ b0.7

B0.7
0

�1.3
⊥

�0.3
‖

(bz � B0).

(9)

Now consider the generalization of those prior results to
the case where bz is not small. We can no longer use z to
parameterize the FLRW. Here we consider parameterization in
terms of τ and consider diffusion coefficients in terms of τ as in
Equation (6). Using τ ′ = τB0/�‖, we can convert Equations (4)
to dimensionless form:

dx ′

dτ ′ = bx

B0

�‖
�⊥

= bx

b
R

dy ′

dτ ′ = by

B0

�‖
�⊥

= by

b
R

dz′

dτ ′ = B0 + bz

B0
= 1 +

bz

B0
. (10)

When bz is negligible, these equations imply dz′ = dτ ′ and
exactly correspond to Equations (7). Thus we generalize the
asymptotic power-law behavior at low bz, 〈x ′2〉/(2z′) ∼ Rγ , to
general bz by using τ ′ = z′, which implies τ = z/B0. Then
Equations (9) correspond to diffusion coefficients as

Quasilinear :
〈x2〉
2τ

∼ b2

B0
�‖

Bohm :
〈x2〉
2τ

∼ b�⊥

Percolative :
〈x2〉
2τ

∼ b0.7B0.3
0

�1.3
⊥

�0.3
‖

.

(11)

In the present work, we will use analytic and computational
techniques to determine which of these forms for asymptotic
diffusion coefficients in terms of the parameter τ is applicable
in the limit B0 → 0, which represents an alternative route to
R → ∞. In this limit, a quasilinear coefficient would diverge,
a Bohm coefficient would remain finite, and a percolative
coefficient would tend to zero. In other words, the FLRW would
be superdiffusive, diffusive, or subdiffusive, respectively.

Finally, to examine 〈x2〉/(2s), in terms of the more common
parameterization s, we note that ds = Bdτ and consider the
limiting cases of B0 � b and B0 � b. For these, we use
ds = bdτ and ds = B0dτ , respectively, to obtain the following
asymptotic behavior:

Quasilinear :
〈x2〉
2s

∼
{

(b/B0)�‖ for B0 � b

(b/B0)2�‖ for B0 � b

Bohm :
〈x2〉
2s

∼
{
�⊥ for B0 � b
(b/B0)�⊥ for B0 � b

Percolative :
〈x2〉
2s

∼
{

(b/B0)−0.3�1.3
⊥ �−0.3

‖ for B0 � b

(b/B0)0.7�1.3
⊥ �−0.3

‖ for B0 � b.

(12)
Contrasting Equations (11) and (12), for the s parameteriza-
tion we should not expect a single power-law scaling of the
diffusion coefficients over both high and low b/B0. Indeed,
if we attempt to apply distinct scaling in the parallel direc-
tion (by �‖) and perpendicular direction (by �⊥), then s it-
self, which combines parallel and perpendicular motion by
ds =

√
dx2 + dy2 + dz2, does not have a simple scaling. Fur-

thermore, theoretical calculation of these diffusion coefficients
by integrating Equations (2) would be difficult because they in-
volve B−1 = [b2

x +b2
y +(B0 +bz)2]−1/2, which is nonlinear in the

fluctuation b. In the following section, we will instead derive
the field line diffusion coefficients in terms of τ .
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3. ANALYTIC THEORY FOR ZERO MEAN FIELD

3.1. Basic Theory

We consider the FLRW for homogeneous, isotropic turbu-
lence with no mean magnetic field. With isotropy, we can assume
the fluctuations in the x, y, and z directions to be statistically
identical, and with no mean field, the diffusion coefficients in
each direction are the same:

D = Dx = Dy = Dz. (13)

When we write D or D with no functional dependence, we are
referring to the asymptotic limit at large τ or s, respectively. The
following derivation is similar to that of Ruffolo et al. (2004).

For zero mean field, we use B0 = 0 in Equations (4). Then
following Jokipii & Parker (1968), we express the displacement
in, say, the x coordinate of a field line over τ by

x =
∫ τ

0
bx[x(τ ′), y(τ ′), z(τ ′)]dτ ′. (14)

The ensemble average variance is then given by

〈x2〉 =
∫ τ

0

∫ τ

0
〈bx(x ′, y ′, z′)bx(x,′′ y,′′ z′′)〉dτ ′dτ,′′ (15)

where we introduce the notation x ′ for x(τ ′), x ′′ for x(τ ′′), etc.
Setting Δτ ≡ τ ′′ − τ ′, and with the assumption of homogeneity,

〈x2〉 =
∫ τ

0

∫ τ−τ ′

−τ ′
Lxx(Δτ )dΔτdτ ′. (16)

We use the symbol Lxx(Δτ ) to denote the ensemble average
Lagrangian correlation of bx at two locations along the same
magnetic field line separated by Δτ .

The Lagrangian correlation function differs from a standard
(Eulerian) correlation function in that the positions themselves
depend on the field line trajectory. The Eulerian correlation
function is the inverse Fourier transform of the power spectrum,
which can often be specified based on physical considerations.
It is possible to relate the Lagrangian correlation function Lxx

to the Eulerian correlation function Rxx (and thence the power
spectrum) using the following approximation:

Lxx(Δτ ) =
∫

Rxx(�x)P (�x|Δτ )d�x, (17)

where P (�x|Δτ ) is the distribution of the displacement �x of
field lines after Δτ . This approximation is known as Corrsin’s
independence hypothesis (Corrsin 1959; Salu & Montgomery
1977; see also McComb 1990). Computer simulations have been
used to verify that theories based on Corrsin’s hypothesis are
successful for the FLRW (Gray et al. 1996; Ghilea et al. 2011)
and field line separation (Ruffolo et al. 2004) in two-component
turbulence and the FLRW in reduced magnetohydrodynamic
(RMHD) turbulence (Snodin et al. 2013b), except that limiting
quasi-2D cases can be problematic. The limitation of Corrsin’s
hypothesis is that it accounts for Lagrangian trajectories in terms
of the two-point Eulerian correlation, so it does not account
for coherent structures or for “memory” in the random walk,
which occurs for nearly 2D turbulence because the FLRW can
be temporarily trapped in “islands” with closed 2D trajectories
(Ruffolo et al. 2003; Chuychai et al. 2007; Seripienlert et al.
2010).

We employ Corrsin’s hypothesis and use P (�x|Δτ ) =
P (Δx|Δτ )P (Δy|Δτ )P (Δz|Δτ ) because of the statistical inde-
pendence of Δx, Δy, and Δz, which is exact for our present
case of isotropic turbulence and mirror symmetry, and also for
some other symmetries. Then substituting Equation (17) into
Equation (16) yields

〈x2〉 =
∫ τ

0

∫ τ−τ ′

−τ ′

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Rxx(Δx, Δy, Δz)

× P (Δx|Δτ )P (Δy|Δτ )P (Δz|Δτ ) dΔx dΔy dΔz dΔτ dτ ′.
(18)

3.2. Diffusive Decorrelation

There are different versions of the theory. Here we start by
using diffusive decorrelation (DD; Taylor & McNamara 1971;
Salu & Montgomery 1977; Matthaeus et al. 1995). The key
assumptions of DD are that the magnetic field lines spread
diffusively over the decorrelation scale of the random walk
and their distributions are Gaussian. Thus the displacement
distributions P of the DD model are Gaussian with variances

σ 2
x = σ 2

y = σ 2
z = 2D|Δτ |, (19)

where D is the asymptotic diffusion coefficient in terms of τ
(see Equations (6) and (13)).

Before delving deeper into the mathematical derivation, let us
consider a simple conceptual derivation (adapted from Ruffolo
et al. 2004):

D = 〈x2〉
2Δτ

∼
〈(

dx

dτ

)2

T

〉
= 〈b2

x T 〉, (20)

where T represents the τ scale over which bx decorrelates and
thus can be considered a “mean free τ .” This FLRW is entirely
“intrinsic,” i.e., the decorrelation depends entirely on the FLRW
itself. Suppose the decorrelation occurs over a spatial scale �.
Then for DD, we use

T ∼ �2

2D

D ∼ 1

2
〈b2

x〉
�2

D

D ∼ b√
6
�, (21)

where b2 ≡ 〈|b|2〉. Note that in the above, T is expressed in terms
of � and D, which are constant for all field line trajectories in
the ensemble. We obtain a diffusion coefficient in the form of
Bohm diffusion as derived in Section 2 (see Equation (11)).

Similarly, for D, the diffusion coefficient in terms of s,

D ∼
〈(

dx

ds

)2

S

〉
=

〈
b2

x

|b|2 S

〉
, (22)

where S is a “mean free s.” For DD, we use

S ∼ �2

2D

D ∼ 1

2

〈
b2

x

|b|2
〉

�2

D

D ∼ �√
6
. (23)
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Then the ratio between the two diffusion coefficients is expected
to be

D/D = b, (24)

the rms fluctuation, a prediction that is independent of the form
of the power spectrum.

To continue the mathematical derivation of D, we make use
of the power spectrum Sxx(k):

Rxx(Δx, Δy, Δz) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Sxx(k)

× eikxΔxeikyΔyeikzΔzdkxdkydkz. (25)

Note that for Gaussian P,
∫ ∞

−∞
eikxΔxP (Δx|Δτ )dΔx =

∫ ∞

−∞

eikxΔx

√
2πσ 2

exp

[
− (Δx)2

2σ 2

]
dΔx

= e− 1
2 σ 2k2

x

= e−Dk2
x |Δτ |, (26)

which makes use of Equation (19), and with the analogous
formulae for the Δy and Δz integrals, we obtain

〈x2〉 =
∫ ∫ τ

0

∫ τ−τ ′

−τ ′
Sxx(k)e−Dk2|Δτ |dΔτdτ ′dk. (27)

Note that Sxx(k) as used here follows a different Fourier trans-
form convention than Pxx(k) as used in some of our previous
work. The physical results do not depend on the convention
used. Effectively, for the determination of the asymptotic diffu-
sion coefficient at large τ , the limits of integration over Δτ in
Equation (27) can be taken to be −∞ and ∞ (Jokipii & Parker
1968). In this diffusive regime, we have

〈
x2

〉 = 2Dτ and

D =
√∫

Sxx(k)

k2
dk. (28)

In terms of the modal energy spectral density S(k) = Sxx(k) +
Syy(k)+Szz(k), which for isotropic turbulence is a function only
of the wavevector magnitude k, we have

D =
√

1

3

∫
S(k)

k2
dk. (29)

In terms of the arclength, parameterized by ds = Bdτ , we
can estimate the diffusion coefficient D using Equation (24):

D = D

b
=

√
1

3

1

b2

∫
S(k)

k2
dk =

√
1

3

∫
S(k)/k2dk∫

S(k)dk
. (30)

These diffusion coefficients are quite similar to that obtained by
Matthaeus et al. (1995) for a 2D axisymmetric component of
transverse turbulence with a mean field B0:

D2D ≡
〈
x2

〉

2z
=

√
1

2

1

B2
0

∫
S(k⊥)

k2
⊥

dk⊥, (31)

where z serves to parameterize the FLRW, k⊥ ≡ (kx, ky), and
k2
⊥ = k2

x + k2
y . The only differences in these expressions are

due to the different dimensionality n (n = 3 for isotropic 3D
turbulence, n = 2 for 2D turbulence, which appears in the factor

1/n inside the square root), and the magnetic field component
associated with the independent variable (not used for isotropic
turbulence in terms of τ ; b for isotropic turbulence in terms of
s; and B0 for 2D turbulence in terms of z). The reason for the
similar expressions is that both diffusion processes are intrinsic,
involving random flights in which the magnetic fluctuation along
the trajectory decorrelates stochastically due to the random
motion itself (not due to B0).

Matthaeus et al. (1995) pointed out that the integral in
Equation (31) introduces a new length scale, the ultrascale λ̃.
That equation can be expressed as (Ruffolo et al. 2004)

D2D = λ̃√
2

b

B0
(32)

with

λ̃ ≡
√∫

S(k)/k2dk⊥∫
S(k)dk⊥

. (33)

These concepts can be generalized to 3D turbulence. For
isotropic turbulence, the diffusion coefficients in Equations (28)
and (30) can be expressed as

D = λ̃

√
〈b2

x〉 = λ̃√
3
b and D = λ̃√

3
, (34)

where

λ̃ ≡
√∫

S(k)/k2dk∫
S(k)dk

, (35)

i.e., λ̃2 is the k−2 moment of the power spectrum. This form of
Bohm diffusion is similar to that anticipated from our heuristic
derivation (Equation (21)).

3.3. Random Ballistic Decorrelation

In the random ballistic decorrelation (RBD) version of the
theory, instead of the assumption of diffusive spreading as
in Equation (19), we assume that the magnetic field lines
ballistically spread in random directions over the decorrelation
distance. Adapted from Ghilea et al. (2011),

σ 2
x = σ 2

y = σ 2
z = 〈

b2
x

〉
Δτ 2. (36)

In the conceptual derivation, T depends on the magnitude of the
local field b as

T ∼ �

|b| ,

so

D ∼
〈(

dx

dτ

)2

T

〉
∼ 1

3

〈 |b|2
|b|

〉
� = 1

3
〈|b|〉 �. (37)

Since S is determined for a ballistic trajectory over a distance �,
we simply use

S ∼ �

D ∼
〈(

dx

ds

)2

S

〉
∼ �

3
. (38)
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Then the ratio D/D for RBD is expected to be

D

D
∼ 〈|b|〉. (39)

The ratio D/D can help distinguish between DD and RBD, as
will be discussed later in this section.

Let us turn to a full mathematical derivation of the asymptotic
diffusion coefficient for RBD. With the RBD variance from
Equation (36), Equation (26) becomes

∫ ∞

−∞
eikxΔxP (Δx |Δτ )dΔx =

∫ ∞

−∞

eikxΔx

√
2π

〈
b2

x

〉
Δτ 2

× exp

[
−(Δx)2

2
〈
b2

x

〉
Δτ 2

]
dΔx

= e− 1
2 〈b2

x〉k2
xΔτ 2

. (40)

Using the analogous results for the Δy and Δz integrals and〈
b2

x

〉 = 〈b2
y〉 = 〈b2

z〉 = b2/3 from isotropy, we obtain
〈
x2

〉
for

large τ as

〈
x2

〉 =
∫ [∫ τ

0

∫ ∞

−∞
Sxx(k)e− 1

6 b2k2Δτ 2
dΔτdτ ′

]
dk

=
√

6πτ

b

∫
Sxx(k)

k
dk. (41)

Now we can obtain the random ballistic diffusion coefficient as

D = Dx ≡
〈
x2

〉

2τ

= 1

b

√
π

6

∫
S(k)

k
dk

= b

√
π

6

∫ ∞
0 kS(k)dk∫ ∞

0 k2S(k)dk
. (42)

The integrals in Equation (42) are related to the total correlation
length λc. To see this, first note that for an isotropic field, we can
consider the total correlation function R(r) = 〈b(r0) ·b(r0 + r)〉,
where r0 is an arbitrary position. The correlation length is then

λc =
∫ ∞

0 R(r)dr

R(0)
. (43)

If we define R(r) in terms of its Fourier transform

R(r) = 4π

∫ ∞

0

sin(kr)

kr
k2S(k)dk, (44)

then we get R(0) = 4π
∫

k2S(k)dk and
∫ ∞

0 R(r)dr =
2π2

∫ ∞
0 kS(k)dk, which when combined give

λc = π

2

∫ ∞
0 kS(k)dk∫ ∞

0 k2S(k)dk
. (45)

A similar result for isotropic 2D turbulence was presented by
Matthaeus et al. (2007). Thus we obtain

D =
√

2

3π
λcb. (46)

Guided by the heuristic result in Equation (37), we consider
how to express Equation (46) in terms of 〈|b|〉. Assuming that
the local distribution in b is Gaussian with width σ in each
component, which is the case in our simulations, we have

〈|b|〉 =
∫ ∞

0 b3e−b2/(2σ 2)db∫ ∞
0 b2e−b2/(2σ 2)db

= 2σ 4

(
√

π/2)σ 3

= (2
√

2/π )σ. (47)

Note that b2 = 3σ 2, so σ = b/
√

3. Then

〈|b|〉 = (2
√

2/π )
b√
3
. (48)

Thus we can rewrite Equation (46) in terms of 〈|b|〉 as

D = λc

2
〈|b|〉, (49)

an expression of Bohm diffusion that is similar to the result of
our heuristic derivation (Equation (37)).

Finally, we note that DD and RBD give different predictions
for D/D. For DD,

D

D
∼ b, (DD) (50)

and for RBD,

D

D
∼ 〈|b|〉 = 0.9213 b (RBD). (51)

Thus in addition to comparing D versus τ between simulations
and different versions of the theory, we can compare the ratio
of asymptotic values D/D between the simulations and DD and
RBD predictions.

3.4. Evolution of the Field Line Random Walk

In the previous two subsections, we determined the magnetic
field line diffusion coefficients in the asymptotic limit τ →
∞. Here we consider the evolution of diffusion coefficients
with τ by using an ordinary differential equation (ODE).
To formulate the ODE, we start by considering the running
diffusion coefficient, defined by

D(τ ) = 1

2

d
〈
x2

〉

dτ
. (52)

Substituting Equation (16) into Equation (52),

1

2

d
〈
x2

〉

dτ
= D(τ ) =

∫ τ

0
Lxx (Δτ ) dΔτ. (53)

We define V (τ ) = 〈
x2

〉
, and the initial condition for

Equation (53) is V (0) = 0. Then, differentiating this equation,
we obtain

d2V (τ )

dτ 2
= 2

dD(τ )

dτ
= 2Lxx (τ ) , (54)

with the initial condition D(0) = 0. Assuming Corrsin’s hypoth-
esis and a Gaussian displacement distribution with variance σ 2

6
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along each coordinate, the ODE (Equation (54)) becomes

d2V (τ )

dτ 2
= 2

dD(τ )

dτ
= 2

∫
Sxx(k)e− k2σ2(τ )

2 dk. (55)

= 2
∫

S(k)

3
e− k2σ2(τ )

2 dk. (56)

In order to determine the FLRW evolution, one can calculate the
running diffusion coefficient D(τ ) by integrating Equation (56)
from 0 to τ . The asymptotic diffusion coefficient D is obtained
by integrating to ∞. For the DD model, one can start by
setting σ 2(τ ) = 2Dτ in Equation (56), using the asymptotic
diffusion coefficient D, where τ is assumed to be positive.
Then we can determine D by integrating Equation (56) over
τ from 0 to ∞ and solving the resulting implicit equation for
D, as in Section 3.2. After determining D, one can obtain the
evolution of the DD running diffusion coefficient by integrating
Equation (56) from 0 to any τ . For the RBD model, we substitute
σ 2(τ ) = 〈

b2
x

〉
τ 2 from Equation (36) into Equation (56). Then we

can determine the RBD running diffusion coefficient and RBD
asymptotic diffusion coefficient by integrating Equation (56).
In addition to the DD and RBD models, in Equation (56), we
can identify σ 2(τ ) = V (τ ), which provides self-closure of the
ODE. We refer to this as the “ODE model,” which was suggested
by Saffman (1963) and Taylor & McNamara (1971), and is
sometimes simply referred to in the literature as the “Corrsin
approximation.” We obtain a result equivalent to those obtained
by Lundgren & Pointin (1976), Wang et al. (1995), Shalchi &
Kourakis (2007), and Snodin et al. (2013a):

d2V (τ )

dτ 2
= 2

∫
S(k)

3
e− k2V (τ )

2 dk. (57)

Using the definition of the diffusion coefficient in Equation (52),
Equation (57) can be rewritten as a system of two first-order
ODEs:

dV (τ )

dτ
= 2D(τ ) (58)

dD(τ )

dτ
=

∫
S(k)

3
e− k2V (τ )

2 dk. (59)

Solving Equations (58) and (59), subject to the initial conditions
V (0) = 0 and D(0) = 0, the evolution of the ODE running
diffusion coefficient is obtained. At low τ , we obtain V (τ ) ∝ τ 2,
which is consistent with ballistic field line trajectories. One can
obtain the asymptotic diffusion coefficient via a first integral,
following Taylor & McNamara (1971). From Equation (57),

d2V (τ )

dτ 2
= 2

4π

3

∫ ∞

0
k2S(k)e− k2V (τ )

2 dk.

Multiplying by dV (τ )/dτ , we obtain

d

dτ

[
1

2

(
dV (τ )

dτ

)2
]

= d

dτ

[
−16π

3

∫ ∞

0
S(k)e− k2V (τ )

2 dk

]

1

2

(
dV (τ )

dτ

)2

= 2D2 (τ ) = C − 16π

3

∫ ∞

0
S(k)e− k2V (τ )

2 dk.

Let us consider the difference between D2 (τ = ∞) and
D2 (τ = 0):

D2 (∞) − D2 (0) = 8π

3

∫ ∞

0
S(k)dk

D2 (∞) = 2

3
b2

∫ ∞
0 S(k)dk∫ ∞

0 k2S(k)dk

D (∞) =
√

2

3
bλ̃. (60)

We note that this diffusion coefficient is a factor of
√

2 greater
than the one obtained for DD. This factor of

√
2 was also

obtained by Snodin et al. (2013a) and Ruffolo & Matthaeus
(2013) for 2D or quasi-2D axisymmetric transverse turbulence.

4. COMPUTER SIMULATIONS

4.1. Techniques and Testing

To test the validity of our analytic models of magnetic field
line diffusion for isotropic turbulence with zero mean field, we
performed direct computer simulations to calculate the running
diffusion coefficients without using any of the assumptions of
the analytic models. The isotropic 3D fluctuating magnetic field
is generated on a regular Fourier grid in wave number space
(k space). The solenoidal property ∇·b = 0 in real space implies
k · b(k) in wave number space. Therefore, the component b(k)
at a given k is given by

b(k) = 1

2

√
S(k)

[
b1(k)eiφ1(k) + ib2(k)eiφ2(k)

]
, (61)

where b1 and b2 are unit vectors perpendicular to each other and
also to k, which ensures that the constructed field is divergence
free. Here φ1 and φ2 are independent random phases at every
k for these two polarization directions and S(k) is the power
spectrum, given by

S(k) = C
k2λ2

(
1 + k2λ2

)Γ/2+2
, (62)

with a normalization constant C, used to control the magnetic
field strength b, and where λ is the bendover scale. Note
that for 3D isotropic fluctuations at a given magnitude k, the
omnidirectional power spectrum is E(k) = 4πk2S(k), which at
large k satisfies the scaling E(k) ∝ k−Γ. For example, when we
set Γ = 5/3 we obtain the Kolmogorov scaling E(k) ∝ k−5/3.
At low k, Equation (62) yields S(k) ∝ k2 as required by
homogeneity (Batchelor 1970). To yield a good resolution of
the discrete power spectrum, we use a zero padding technique,
setting the power to zero for all k above half of the Nyquist
value. Taking an inverse fast Fourier transform of b(k) yields
the real space magnetic field representation. To simulate the
power spectrum covering the energy containing range and the
inertial range of turbulence with zero padding, we generate the
3D isotropic field for b = 1 and λ = 1 on a periodic box of size
Lx = Ly = Lz = 100 with Nx×Ny×Nz = 1024×1024×1024
grid points. In this work it is interesting to note that simulation
results for diffusion coefficients are essentially unchanged (at
least for Γ = 5/3) if we simply use b(k) = √

S(k)b1(k), instead
of the expression in Equation (61).

The above random prescription allows us to generate as
many different realizations of a magnetic field with a given

7
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Table 1
Asymptotic Field Line Diffusion Coefficients and Their Ratios (b = 1, λ = 1)

Quantity Parameters Evaluation Value

Γ = 3/2 Γ = 5/3 Γ = 2

D τ Theory:DD 0.2881 0.3094 0.3522
Theory:RBD 0.2680 0.2916 0.3405
Theory:ODE 0.4075 0.4376 0.4981
Simulation 0.3357(9) 0.3600(5) 0.4069(7)

D s Simulation 0.3759(1) 0.3998(5) 0.4517(9)
D/D τ and s Theory:DD 1.0000 1.0000 1.0000

Theory:RBD 0.9213 0.9213 0.9213
Simulation 0.8929(24) 0.9005(17) 0.9008(23)

spectrum as we wish. In each realization, we trace multiple
magnetic field lines, where each line is obtained by solving
the system of magnetic field line equations from a random
initial location, using Equations (4) up to τ = 125 and
Equations (2) up to s = 125. We solve the magnetic field line
equations numerically using a fifth-order Runge–Kutta method
with adaptive time stepping regulated by a fourth-order error
estimate step. We traced 500,000 field lines, using 12,500 lines
per field representation, to help ensure sufficient sampling.
Collecting displacements for all pairs of points along each field
line, the running diffusion coefficients were calculated.

The theories presented earlier predict D ∝ bλ̃ or bλc, and
D ∝ λ̃ or λc. When deriving λ̃ and λc from the above spectrum of
Equation (62), they are found to be proportional to the bendover
scale λ. Therefore, one expects that the diffusion coefficients
will scale proportionally with λ. As a basic test of our code, we
performed simulations with various values of λ, and confirmed
that D ∝ bλ and D ∝ λ.

4.2. Results

We explore the effect of the power spectrum on the FLRW by
considering three values of Γ corresponding to different mod-
els of magnetohydrodynamic turbulence phenomenology (for a
review, see Zhou et al. 2004). These are Iroshnikov–Kraichnan
scaling with Γ = 3/2 (Iroshnikov 1963; Kraichnan 1965), Kol-
mogorov scaling with Γ = 5/3 (Kolmogorov 1941; Batchelor
1970), and “weak turbulence” scaling with Γ = 2 (Ng & Bhat-
tacharjee 1997; Galtier et al. 2000). The value of Γ is used to
specify the power spectrum of fluctuations according to Equa-
tion (62), both in the computer simulations and for evaluation
of the analytic theory.

After tracing 500,000 field lines for b = 1 and λ = 1, the
running diffusion coefficients Di(τ ) and Di(s) were determined,
as shown in Figure 2 for the example case of Γ = 5/3.
The simulations are sufficiently accurate that the estimates of
diffusion coefficients in each direction are nearly coincident,
according to the symmetry of the problem, indicating that a
sufficient number of field lines and realizations of turbulence
have been simulated. At large values of τ or s, the diffusion
coefficients approach asymptotic values. For Γ = 3/2, 5/3,
and 2, Table 1 shows the asymptotic diffusion coefficients D
and D, which were calculated by averaging Di(τ ) and Di(s)
for i = x, y, and z, weighting according to the number of
available pairs of points, over the interval 60 < τ < 80 or
60 < s < 80. The error of the mean, indicated by parentheses,
was determined based on the spread among the values along the
three directions. Table 1 also shows the diffusion coefficients
calculated for the three versions of the theory. For a more precise

Figure 2. Magnetic field line diffusion coefficients as a function of (a) τ and (b)
s from simulations of isotropic turbulence with zero mean field for the example
case of Γ = 5/3 (in units of b = 1 and λ = 1). The diffusion coefficients with
respect to each coordinate are in very good agreement and almost coincide.

comparison with computer simulation results, we evaluated
the integrals in Equation (33) over a finite k range, from the
minimum to the maximum k values in the Fourier grid used in the
simulations. Recall that all three versions of the theory predict
Bohm diffusion (as generalized to the case of zero mean field
in Section 2) as is usual for theories using Corrsin hypothesis at
high Kubo number R. The computer simulation results confirm
that for this case of R = ∞, the asymptotic diffusion coefficients
are consistent with Bohm diffusion (the diffusion coefficients are
finite). The simulation results are also numerically close to the
results of all three versions of the Corrsin-based theory. We can
see that the ratios between all asymptotic diffusion coefficients
are very similar when changing the power spectral index in
Equation (62) to change the omnidirectional power spectrum at
high k from k−5/3 to k−3/2 or k−2, indicating that our results are
not sensitive to such details of the power spectrum.

Let us now consider whether the simulation results favor
a particular version of the theory. Among the DD, RBD,
and ODE versions, the DD result is closest to the simulation
result (DD is 14% lower). However, the evolution of running
diffusion coefficients as a function of τ as shown in Figure 3
indicates that RBD is more accurate than DD in comparison
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a

Figure 3. Magnetic field line diffusion coefficient as a function of τ from
simulation (using the average of the three lines shown in Figure 2(a)) and three
versions of the analytic theory for b = 1, λ = 1, and different choices for the
spectral index of the fluctuation power spectrum: (a) Γ = 3/2, (b) Γ = 5/3, and
(c) Γ = 2.

with computer simulations at small τ and thus better tracks
the transition from free streaming to asymptotic diffusion.
Moreover, the asymptotic diffusion coefficient predicted by
RBD is only slightly lower than the DD result and is 18%
lower than the simulation result. In addition to comparing theory
and simulation results for D(τ ), we also compare the ratio of
asymptotic values D/D between simulations and DD and RBD
models. It came as a surprise that tracing the field line diffusion
in τ and s at the same time can shed some light on the physical
processes. After all, τ and s provide two parameterizations of
the same field line trajectories. However, in the RBD calculation
of diffusion coefficients, the mean free value T weights the b
ensemble differently than the mean free value S, while in the
DD calculation the weights are independent of the local field, so
the comparison between D and D helps indicate the dominant
FLRW mechanism. The D/D ratios from simulations are close
to 0.90, and are much closer to the RBD prediction of 0.9213
than to the DD prediction of 1. This may indicate that the RBD

version best captures the physics of the FLRW in addition to
being physically simplest and easiest to implement.

5. DISCUSSION AND CONCLUSIONS

In the present work, we have examined the FLRW for
isotropic magnetic turbulence with a zero mean field (B0 =
0). In terms of the Kubo number R = (b/B0)(�‖/�⊥), this
represents a limiting case of R = ∞. Most previous works
considered bz = 0 or bz � B0, in which case R → ∞ is a
quasi-2D limit. In that quasi-2D route to R → ∞, theories based
on Corrsin’s hypothesis have been found to deviate from direct
simulation results because of trapping effects (e.g., Vlad et al.
1998; Ghilea et al. 2011). Our work considers a different route
to R = ∞ and is thus of complementary theoretical interest.
Isotropic magnetic turbulence with no mean field is also of
astrophysical relevance for modeling interstellar turbulence.

A key issue in studying such turbulence, where bz is not
negligible compared with B0, is that the FLRW can no longer be
parameterized in terms of the Cartesian coordinate z along B0.
We have developed parameterizations in terms of the arclength
s and in terms of τ such that dτ = ds/B, where B is the
magnitude of the total magnetic field. The latter is well suited
to a theoretical description. We have worked out the analogs to
quasilinear, Bohm, and percolative diffusion. For B0 = 0 and
parameterizing in terms of either s or τ , a quasilinear field line
diffusion coefficient would diverge, a Bohm coefficient would
remain finite, and a percolative coefficient would tend to zero.
In other words, the FLRW would be superdiffusive, diffusive, or
subdiffusive, respectively. A finite diffusion coefficient is only
possible for Bohm diffusion.

We have developed theories for the field line diffusion
coefficient D(τ ) based on Corrsin’s hypothesis. As is usual for
Corrsin-based theories at high Kubo number, they predict Bohm
diffusion and hence a finite diffusion coefficient for B0 = 0.
They yield an asymptotic diffusion coefficient D ∼ b�, where
� is a coherence scale of the turbulence. In particular, we obtain
expressions in terms of the correlation scale λc (from the k−1

moment of the power spectrum) or the ultrascale λ̃ (from the
k−2 moment).

By performing direct computer simulations, we have con-
firmed Bohm diffusion for isotropic magnetic turbulence with
a zero mean field. Broadly speaking, all three versions of the
theory give asymptotic diffusion coefficients D that are close
to the simulation value (within 25%) for a fluctuation spectrum
with Γ = 3/2, 5/3, or 2. The good agreement for various Γ val-
ues indicates that the theory has some power of generalization.
While DD gives a D value that is slightly closer to simulations,
there is little difference from the RBD prediction (see Table 1).
Figure 3 compares the evolution of D(τ ) for the DD, RBD, and
ODE versions of theory and the simulation results, and the com-
parison is consistent with those of previous work on other types
of turbulence (Snodin et al. 2013a, 2013b): RBD (assuming bal-
listic trajectories) fits better at early τ , DD (assuming diffusive
trajectories) provides a better match to the later evolution, and
ODE overestimates the diffusion coefficient for non-quasilinear
cases such as the present work. We also compare the ratio of
asymptotic diffusion coefficients for the two parameterizations,
D/D, for simulation and theory results, which seems to favor
RBD as a better description of the physical process of field line
diffusion. The RBD version was also the version that performed
best at high Kubo numbers for noisy RMHD turbulence (Snodin
et al. 2013b).
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Our overall conclusions are that Corrsin-based theories re-
main applicable along this route to high Kubo numbers, and
limitations found in previous work with bz � B0 were due to
the quasi-2D limit and resulting trapping effects, not the high
Kubo number per se. For astrophysical applications, the field
line diffusion coefficient can be scaled from our simulation re-
sults, and for physical understanding and theoretical modeling,
the RBD model based on random ballistic trajectories is simple
to apply and best captures the physics.
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