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ABSTRACT

The magnetic field line random walk (FLRW) is important for the transport of energetic particles in many
astrophysical situations. While all authors agree on the quasilinear diffusion of field lines for fluctuations that
mainly vary parallel to a large-scale field, for the opposite case of fluctuations that mainly vary in the perpendicular
directions, there has been an apparent conflict between concepts of Bohm diffusion and percolation/trapping
effects. Here computer simulation and non-perturbative analytic techniques are used to re-examine the FLRW in
magnetic turbulence with slab and two-dimensional (2D) components, in which 2D flux surfaces are disturbed by
the slab fluctuations. Previous non-perturbative theories for D⊥, based on Corrsin’s hypothesis, have identified a slab
contribution with quasilinear behavior and a 2D contribution due to Bohm diffusion with diffusive decorrelation
(DD), combined in a quadratic formula. Here we present analytic theories for other routes to Bohm diffusion,
with random ballistic decorrelation (RBD) either due to the 2D component itself (for a weak slab contribution)
or the total fluctuation field (for a strong slab contribution), combined in a direct sum with the slab contribution.
Computer simulations confirm the applicability of RBD routes for weak or strong slab contributions, while the DD
route applies for a moderate slab contribution. For a very low slab contribution, interesting trapping effects are
found, including a depressed diffusion coefficient and subdiffusive behavior. Thus quasilinear, Bohm, and trapping
behaviors are all found in the same system, together with an overall viewpoint to explain these behaviors.
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1. INTRODUCTION

Turbulent magnetic fields are omnipresent in astrophysical
plasmas, and the motion of energetic charged particles basically
follows the magnetic field. Thus, the random walk of magnetic
field lines in space is directly relevant to the transport of such
particles perpendicular to the large-scale magnetic field (e.g.,
Jokipii 1966; Urch 1977; Matthaeus et al. 2003; Ruffolo et al.
2008). Early descriptions of the field line random walk (FLRW)
in magnetic turbulence used a quasilinear theory (Jokipii 1966;
Jokipii & Parker 1968), which is now known to apply to
fluctuations that vary mainly along a large-scale field, such
as parallel-propagating Alfvén waves, or for which the Kubo
number (see Kubo 1963) is much less than 1 (if it exists). In
this case, the FLRW initially undergoes free streaming until
traveling over the order of the mean free path, after which the
FLRW becomes diffusive. If z is the coordinate along a large-
scale magnetic field of magnitude B0, the diffusion along the
perpendicular coordinates can be characterized by a diffusion
coefficient D⊥ ≡ 〈Δx2 + Δy2〉/(4Δz). Quasilinear theory yields
D⊥ ∝ (b/B0)2, where b is the root-mean-squared magnetic
fluctuation.

For transverse fluctuations that mainly vary in directions per-
pendicular to the large-scale field (e.g., at a high Kubo num-
ber R � 1), as are expected to result from the magnetohy-
drodynamic (MHD) interactions of counter-propagating Alfvén
waves (Shebalin et al. 1983), there has been disagreement about
the form of the diffusion coefficient. For the related problem
of two-dimensional (2D) hydrodynamic turbulence, Salu &
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Montgomery (1977) obtained Bohm diffusion, which in this
context means the dependence D⊥ ∝ b/B0. They described
a process based on diffusive decorrelation (DD), assuming
Corrsin’s hypothesis (Corrsin 1959). Kadomtsev & Pogutse
(1979) also inferred Bohm diffusion, based on a dimensional
argument related to what (in the present work) we term random
ballistic decorrelation (RBD). For a two-component 2D+slab
model of turbulence (to be described shortly) in which the 2D
component dominates, the non-perturbative theory of Matthaeus
et al. (1995) predicted Bohm diffusion using the DD approach,
which was confirmed in computer simulations by Gray et al.
(1996).

On the other hand, for a related problem (2D hydrodynamic
turbulence with slowly varying fields), Gruzinov et al. (1990)
proposed a theory involving percolation, which was taken by
Isichenko (1991b) to apply to the FLRW for a high Kubo num-
ber and weak fluctuations. In this theory, D⊥ ≈ (b/B0)R−3/10,
where the Kubo number is R ≡ (b/B0)(�c/�⊥), and �c and
�⊥ are the parallel and perpendicular correlation lengths, re-
spectively. There is some computational confirmation for the
FLRW and analogous problems (e.g., Ottaviani 1992; Reuss &
Misguich 1996; Hauff et al. 2010). Considerations related to
percolation have also been referred to as trapping effects (e.g.,
Ottaviani 1992; Vlad et al. 1998; Neuer & Spatschek 2006;
Negrea et al. 2007), a term that is broader than percolation. Ad-
ditional theoretical techniques include the decorrelation trajec-
tory method and A-Langevin equations (Vlad et al. 1998; Neuer
& Spatschek 2006). Advocates of percolation models frequently
refer to Bohm diffusion as incorrect, though some of their argu-
ments were perhaps meant to apply to a limit of extremely high
R and an FLRW strongly dominated by 2D structures.
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Here we re-examine the nature of the FLRW in the context
of the two-component 2D+slab model of magnetic turbulence.
This model describes magnetostatic fluctuations as a sum of
a slab component that only varies along the large-scale field,
which could be physically due to a spectrum of Alfvénic fluctu-
ations, and a 2D component that only varies in the perpendicular
directions, which could be due to a perpendicular cascade from
interacting waves (Shebalin et al. 1983). The model was moti-
vated by observations of a similar dichotomy in fluctuations of
the interplanetary magnetic field (Matthaeus et al. 1990; Dasso
et al. 2005; Osman & Horbury 2007; Weygand et al. 2009),
and has proven useful in describing turbulence in the typical
solar wind (Bieber et al. 1996), a magnetic cloud (Leamon et al.
1998), and a structure of high Alfvén speed (Smith et al. 2001,
2004), as well as in explaining a wide range of particle transport
observations (Bieber et al. 1994, 2004; Shalchi et al. 2006). The
2D+slab model is a simplification that facilitates analytic calcu-
lations and computer simulations. The 2D component has flux
surfaces that project onto equipotential contours in the x–y plane
(Figure 1(a)), but these flux surfaces are disturbed upon the ad-
dition of slab fluctuations (Figure 1(b)); see also Figures 1 and 2
of Matthaeus et al. (1995). That work predicted that the FLRW
would exhibit quasilinear diffusion when the slab component
dominates and Bohm diffusion when the 2D component dom-
inates, which was confirmed by Gray et al. (1996) for a wide
range of parameters. However, as part of a survey of particle
transport properties, Ruffolo et al. (2008) performed a simula-
tion run for a very low slab energy fraction, fs = 0.01, and an
unusual FLRW was found: free streaming was followed by tran-
sient subdiffusion and lower asymptotic diffusion than expected.
(Note that Ottaviani (1992) previously found transient subdiffu-
sion followed by asymptotic diffusion at high Kubo number for
a different fluctuation model in a transport problem analogous
to the FLRW.) Subdiffusion seems to indicate trapping effects,
in which field lines are temporarily trapped in topological struc-
tures of the 2D turbulence (see Ruffolo et al. 2003; Zimbardo
et al. 2004; Chuychai et al. 2007; Seripienlert et al. 2010).

In the present work, we confirm that the slab contribution
to the FLRW is quasilinear diffusion, and we find a variety
of behaviors for the 2D contribution. For this contribution,
in addition to the previously known route to Bohm diffusion
(Matthaeus et al. 1995), described by Corrsin’s hypothesis with
DD, we find additional routes to Bohm diffusion involving
RBD. Each type of Bohm diffusion can provide a useful
description over a different parameter range. For very low slab
contributions, the disturbance of the 2D flux surfaces is so
weak that trapping effects cause a reduction in the diffusion
coefficient, as the assumptions underlying the derivations of
Bohm diffusion become less accurate, and at the lowest slab
fractions we can confirm subdiffusive behavior (which makes
it difficult to measure diffusion coefficients for comparison
with percolation theory). Thus, we have identified a system
in which the FLRW has contributions from quasilinear and
Bohm diffusion over most of the parameter range examined,
but trapping effects are strong in the limit where the FLRW is
largely constrained to only weakly disturbed 2D flux surfaces,
reconciling many of the claims of previous studies.

2. MULTIPLE ROUTES TO BOHM DIFFUSION

2.1. Magnetic Field Model

We examine the random walk of magnetic field lines and
the perpendicular diffusion coefficients for the case of the two-

component 2D+slab turbulence model, in which the magnetic
field is expressed as

B = B0ẑ + b(x, y, z), (1)

where B0ẑ is a constant mean (large-scale) field. The fluctuation
b is transverse, so that b ⊥ ẑ, and b is separable into two
components, a “slab” component that depends only on the z-
coordinate and a “2D” component that depends only on the x-
and y-coordinates:

b(x, y, z) = bslab(z) + b2D(x, y). (2)

Because we must have ∇ · B = 0 and by construction ∇ ·B0ẑ =
∇ · bslab(z) = 0, therefore ∇ · b2D = 0, which is satisfied when
b2D = ∇ × [a(x, y)ẑ] for a scalar potential function a(x, y).
For pure 2D fluctuations, the magnetic field lines exactly follow
2D flux surfaces (Figure 1(a)) defined by contours of constant
potential (also shown in Figure 2), but the addition of the slab
component allows field lines to diffuse away from the 2D flux
surfaces (Figures 1(b) and 2).

For a magnetic field model organized around a mean field B0,
the two-component model includes elements of a traditional
slab model (Jokipii 1966) as well as a 2D rendition of the
highly oblique wavevectors that are favored by anisotropic
spectral transfer (Shebalin et al. 1983). The motivation for this
model is mainly to provide both analytical and computational
simplicity—note that for Nz slab modes and Nx ×Ny 2D modes,
the two-component model involves many fewer total degrees of
freedom than would a full Nx × Ny × Nz three-dimensional
model. However the model is in fact three-dimensional, in
that both the mean square and local gradients are in general
oblique, and a test particle in any region of space will encounter
local variations in arbitrary directions. While the model is
clearly not complete, it provides an approximate separation
into perpendicular and parallel-propagating transverse “Alfven
modes.” The parallel variance modes are ignored in this model
(see however Matthaeus & Ghosh 1999), thus discarding the
“fast mode” contribution (e.g., Carbone et al. 1995) which is
thought in any case to evolve somewhat independently (Cho &
Lazarian 2002) and to represent a small ingredient in solar wind
turbulence (Belcher & Davis 1971).

Note that we use the symbol b2 as a shorthand for the fluc-
tuation energy 〈b2〉, either for total fluctuations or a single
component, and thus b refers to the root-mean-squared fluc-
tuation

√
〈b2〉. The slab and 2D contributions are taken to be

statistically independent, so b2 = b2
slab + b2

2D. In the present
work we assume axisymmetry, with statistical rotational sym-
metry around the mean field direction, ẑ, so that fluctuations
are statistically identical in the x- and y-directions (the assump-
tion of axisymmetry was relaxed in some FLRW studies; see
Pommois et al. 2001; Ruffolo et al. 2006; Weinhorst et al. 2008).
Axisymmetry implies statistically identical properties of field
line trajectories along x and y.

Because the fluctuations are transverse, a field line never
backtracks in z, and we can use this coordinate to uniquely
specify a location along the field line. Then the field line
trajectory is specified by x(z) and y(z), determined by

dx

dz
= bx(x, y, z)

B0

dy

dz
= by(x, y, z)

B0
. (3)

2.2. Concepts

Before undertaking the full mathematical derivation of the
asymptotic diffusion coefficient, let us introduce the key
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(a)

(b)

Figure 1. Magnetic field line trajectories (red and blue lines) in a representation
of 2D turbulence, b2D(x, y), added to a mean field B0ẑ, (a) without and (b) with
a component of slab turbulence, bslab(z). The surface plot at the bottom shows
the 2D potential function a(x, y), and equipotential contours are indicated for
a certain value of a (black lines). In the absence of a slab component, the field
lines are trapped on equipotential flux surfaces, which project onto contours of
constant a. With 20% of the fluctuation energy in a slab component, the flux
surfaces are disturbed and the field lines asymptotically diffuse in the x- and y-
directions with a combination of quasilinear diffusion due to the slab component
and Bohm diffusion associated with the 2D component.

concepts in terms of simple, order-of-magnitude relations. For
diffusive behavior associated with axisymmetric fluctuations,
we have

〈Δx2〉 = 〈Δy2〉 = 2D⊥Δz (4)

D⊥ ∼ 〈(dx/dz)2〉 � ∼
〈
b2

x

〉
B2

0

� (5)

for a “mean free distance” � in the z-direction (Ruffolo et al.
2004).

The prescription for � depends on what process determines the
decorrelation of bx. For slab fluctuations, in which bx depends
only on z, the decorrelation is due to the trajectory of the field
line along z, according to the mean field B0ẑ. Then, it is natural

(c)

)b()a(

(d)

Figure 2. Illustration of four regimes of magnetic field line random walks (green
dashed lines) in 2D+slab turbulence, for which different processes govern the
Lagrangian decorrelation of the 2D field. The 2D field follows equipotential
contours (black lines) while the slab field varies randomly with z. Colored
dots illustrate the distribution of field line locations for an ensemble of slab
fields at varying distance z from a common starting point (at increasing z for
black, blue, and red points, respectively). (a) For a strong slab contribution,
there is random ballistic decorrelation (RBD) of the 2D field due to nearly
straight field line trajectories (dominated by slab fluctuations). We call this
RBD/2D+slab because both components contribute to the ballistic trajectories.
(b) For a moderate slab contribution, there is diffusive decorrelation (DD) of
the 2D field due to diffusion (again dominated by slab fluctuations). (c) For a
weak slab contribution, there is RBD due to the 2D field itself, called RBD/

2D. Note that panels (a)–(c) all represent routes to Bohm diffusion for the 2D
contribution. (d) For a very weak slab contribution, field lines remain trapped
along 2D flux surfaces for long distances, with “memory effects,” and in some
cases the field line random walk is subdiffusive.

for � to be of the order of the correlation length �c:

Dslab
⊥ ∼ 1

2

b2
slab

B2
0

�c = fs

2

b2

B2
0

�c, (6)

where fs ≡ b2
slab/b

2 is the slab fraction of the fluctuation energy.
(Note that for axisymmetric turbulence, b2 = 〈b2〉 = 2〈b2

x〉,
either for the total fluctuation field or for either component.)
In fact, Equation (6) is an equality, to be derived in the next
section. When the diffusion coefficient depends on the square of
the fluctuation amplitude, as in this case, we refer to quasilinear
diffusion.

For 2D fluctuations, the decorrelation instead occurs when the
x–y displacement is on the order of a perpendicular length scale
of the turbulence. Let us call the scale �⊥ and reserve its precise
specification for the derivation in Section 2.3. Previous detailed
derivations (Salu & Montgomery 1977; Matthaeus et al. 1995)
have assumed DD with the asymptotic diffusion coefficient.
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Setting 〈Δx2〉 to �2
⊥ in Equation (4) yields

� ∼ �2
⊥

2D⊥
, (7)

so the 2D contribution to the diffusion coefficient is

D⊥ − Dslab
⊥ ∼ 1

2

b2
2D

B2
0

�2
⊥

2D⊥
. (8)

For the case where the slab contribution is negligible, we use
the symbol D2D

⊥ :

D2D
⊥ ∼ 1

2

b2D

B0
�⊥. (9)

In a more general context, b2D = √
1 − fs b, so

D2D
⊥ ∼

√
1 − fs

2

b

B0
�⊥. (10)

When the diffusion coefficient depends on the first power of the
fluctuation amplitude, we refer to Bohm diffusion, and this line
of reasoning comprises one route to Bohm diffusion.

Then Equation (8) can be written as

D⊥ − Dslab
⊥ = (D2D

⊥ )2

2D⊥
, (11)

which has the solution (Matthaeus et al. 1995)

D⊥ = Dslab
⊥
2

+

√(
Dslab

⊥
2

)2

+ (D2D
⊥ )2, (12)

so the slab and 2D terms combine in a “quadratic” fashion due to
the dependence on D⊥ on the right-hand side of Equation (11).

As an aside, consider the scaling of the field line Equations (3)
by the bendover scales of the slab and 2D turbulence, i.e., λ and
λ⊥. Using x′

⊥ = x⊥/λ⊥, where x⊥ = (x, y), and z′ = z/λ, we
obtain

dx′
⊥

dz′ = b
B0

λ

λ⊥
. (13)

Now consider the scaled fluctuation amplitude

r ≡ b

B0

λ

λ⊥
. (14)

A similar quantity was considered by Ruffolo et al. (2004). For
a given type of turbulence, i.e., a given fs, the scaled diffusion
coefficient D′ = D(λ/λ2

⊥) should depend only on r. Thus we
use r, along with fs, as a control parameter when reporting results
for the field line diffusion coefficient (see Section 3). Note also
that for an intermediate value of fs, assuming the correlation
scales �c and �⊥ to be of the same order of magnitude as the
spectral bendover scales λ and λ⊥, respectively, we have

r ∼ Dslab
⊥

D2D
⊥

, (15)

so r also characterizes the relative contributions of the slab and
2D components.

Although r appears similar to the widely used Kubo num-
ber, and they are based on the same scaling, they are phys-
ically distinct. For the FLRW, the Kubo number is typically

Figure 3. Examples of computer simulation results for magnetic field line
diffusion coefficients Dx = 〈Δx2〉/(2Δz) and Dy = 〈Δy2〉/(2Δz) as a function
of Δz for r = (b/B0)(λ‖/λ⊥) = 1 and a slab fraction of (a) fs = 0.5 and (b)
fs = 0.03. The turbulence is axisymmetric, so Dx and Dy should differ only
through statistical fluctuations. In each case, Dx and Dy rise rapidly at low Δz

because of free streaming, before the full development of a random walk. At
large Δz, they gradually decrease due to a numerical periodicity effect. For panel
(a), Dx and Dy reach nearly constant values, indicating asymptotic diffusion.
For panel (b), the diffusion coefficients peak and then decrease, indicating a
subdiffusive field line random walk. Because of the periodicity effect, it is
unclear whether the asymptotic behavior is subdiffusive or diffusive.

defined as R = (b/B0)(lc/ l⊥), where lc and l⊥ are correlation
lengths of the total magnetic field parallel and perpendicular to
the mean magnetic field, respectively. Typically, this quantity
is used for one-component anisotropic turbulence. However, for
two-component 2D+slab turbulence the Kubo number is indeter-
minate: lc is infinite (because the 2D component is independent
of z) and l⊥ is infinite (because the slab component is indepen-
dent of x and y). Another important difference is that r � 1
implies quasilinear behavior—which is characteristic of R � 1
for one-component turbulence (Isichenko 1991a).

Returning to the concepts of diffusion, the assumption of
diffusion in Equation (7) seems natural, given that we are per-
forming a calculation of diffusive behavior. However, a tur-
bulent FLRW typically exhibits free streaming at small dis-
placements Δz and asymptotic diffusion at larger displacements
(Figure 3(a)). Then, the question arises as to whether the mean
free path � in the z-direction—which relates to the initial decor-
relation of the random walk—is determined by the formula
for asymptotic diffusion or by the free-streaming behavior at
smaller displacements.

Actually, the most common assumption in random walk
theory is that individual “steps” are ballistic (not yet diffusive),
either as straight-line trajectories (free streaming) or motion
according to a background force, until a “collision” starts to
decorrelate the random walk. If the decorrelation is eventually
complete, after a few correlation lengths, then at that later stage
the random walk achieves asymptotic diffusion. Accordingly,
in the present work, we consider alternative routes to Bohm
diffusion with random ballistic diffusion (RBD) in the initial
free-streaming regime, instead of DD.

Either RBD or DD may be appropriate to describe the (Bohm)
2D contribution to the diffusion, depending on the strength of the
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quasilinear slab contribution. To illustrate this, Figure 2 shows
nested flux surfaces of the 2D field, i.e., equipotential contours of
the potential function a(x, y), and colored points schematically
indicate the spread of field lines for that 2D field plus an
ensemble of slab fields; each color represents the distribution at
a different Δz. We identify four regimes of behavior.

1. For the case of a strong slab contribution, Figure 2(a)
illustrates that a field line can rapidly move in a random
direction due to the slab field, and when the slab field is
sufficiently strong, motion during the free-streaming regime
is sufficient to decorrelate (e.g., change the direction of)
the 2D field. Thus, the mean free path is specified by
an ensemble of straight-line trajectories (represented by
expanding “clouds” of field line locations in Figure 2(a)),
until the x (or y) displacement is of order �⊥:

� ∼ �⊥
(dx/dz)rms

= B0√〈b2
x〉

�⊥, (16)

where 〈b2
x〉 includes both slab and 2D contributions. We

therefore use the shorthand “RBD/2D+slab” to refer to
this route of RBD. Then we obtain another form of Bohm
diffusion:

D⊥ − Dslab
⊥ = D2D

⊥ ∼ 1

2

b2
2D

B2
0

� = 1 − fs√
2

b

B0
�⊥ (17)

D⊥ = Dslab
⊥ + D2D

⊥ . (18)

Kadomtsev & Pogutse (1979) presented a similar qualita-
tive argument for Bohm diffusion at high Kubo number.
Note that compared with the DD route to Bohm diffusion,
in this RBD route the dependence on fs is different, the
specification of �⊥ is different (see Section 2.3), and the
slab and 2D contributions combine in a direct sum.

2. For a moderate slab contribution (Figure 2(b)), it is possible
that slab turbulence in the free-streaming regime is insuf-
ficient to carry magnetic field lines over a scale �⊥ (the
x–y distance over which b2D changes), but in the diffusive
regime the slab contribution does decorrelate the random
walk more rapidly than the 2D contribution to the trajectory.
In this case, it is appropriate to use DD and Equations (10)
and (12) as derived by Matthaeus et al. (1995).

3. For a weak slab contribution (Figure 2(c)), the slab fluctua-
tions do not significantly contribute to the decorrelation of
the 2D fluctuations. Therefore, the 2D fluctuations decor-
relate due to the initial 2D ballistic contribution to the field
line trajectory, and after the decorrelation the 2D fluctua-
tions contribute to a diffusive random walk, provided there
are sufficient slab fluctuations to escape from nested 2D flux
structures. Assuming the slab contribution to be diffusive
(and weak), we use a model of RBD due to the 2D compo-
nent alone, for which we use the shorthand “RBD/2D”:

� ∼ B0√〈b2
x〉2D

�⊥, (19)

D⊥ − Dslab
⊥ = D2D

⊥ ∼
√

1 − fs

2

b

B0
�⊥ (20)

D⊥ = Dslab
⊥ + D2D

⊥ . (21)

The formula for D2D
⊥ appears similar to that for DD (for a

moderate slab contribution) but �⊥ is different and the slab
and 2D contributions combine in a direct sum.

4. For a very weak slab contribution (Figure 2(d)), there is
very little disturbance of 2D flux surfaces, and a field
line experiences temporary topological trapping in a set of
nested flux surfaces (Ruffolo et al. 2003). This phenomenon
underlies observed “dropouts” in solar energetic particle
fluxes (Mazur et al. 2000; Gosling et al. 2004), which
are attributed to complex, intermittent patterns of field
line connection from a compact particle source at the Sun
(an impulsive solar flare site) to a detector near Earth
(Giacalone et al. 2000; Ruffolo et al. 2003; Zimbardo
et al. 2004; Pommois et al. 2005). The key mechanism for
field lines (or particles) to escape from a set of nested 2D
flux surfaces is the slab contribution to diffusion, but such
diffusive escape is suppressed across a flux surface where
the mean squared 2D field is strong and/or the flux surface
is convoluted (Chuychai et al. 2005, 2007; Tooprakai et al.
2007; Seripienlert et al. 2010).
Previous computer simulations have shown that in some
cases, corresponding to Regime 3 above, temporary topo-
logical trapping and suppressed diffusive escape apply to
subsets of field lines (with “conditional statistics” that de-
pend on the initial conditions) but have little effect on the
ensemble average statistics. In the context of the 2D+slab
model, to see a substantial reduction in the ensemble aver-
age diffusion coefficient requires a very weak slab contri-
bution and hence was noticed only recently (Ruffolo et al.
2008). Subdiffusion has also been found in computer sim-
ulations (Figure 3(b); see also Ruffolo et al. 2008). Such
effects represent a breakdown in our theories of Bohm dif-
fusion, presumably because for a very weak slab contri-
bution, a field line that repeatedly follows similar trajec-
tories around a 2D flux surface (approaching the pure 2D
case shown in Figure 1(a)) has a longer-term “memory.”
Such behavior for other models of turbulent fluctuations
has been addressed by the percolation theories of Gruzinov
et al. (1990) and Isichenko (1991b), computer simulations
by Ottaviani (1992), and later work in the literature.

All four regimes of behavior can be distinguished in terms
of the dependence of D⊥ on r and fs, and are identified in our
computer simulation results (Section 3).

2.3. Analytic Theory

For the first three of these four regimes of behavior, we have
developed non-perturbative analytic theories for the asymptotic
diffusion coefficients, which are consistent with the depen-
dences worked out in the previous section. The calculations
here initially follow Matthaeus et al. (1995) and Ruffolo et al.
(2004). For transverse fluctuations, the trajectory of a magnetic
field line satisfies Equations (3). Then the change in, say, the
x-coordinate over a distance Δz along the mean field is

Δx ≡ x(Δz) − x(0) = 1

B0

∫ Δz

0
bx[x⊥(z′), z′]dz′, (22)

where x⊥ = (x, y) is a (random) field line trajectory. The
ensemble average of (Δx)2 can be expressed by

〈Δx2〉 = 1

B2
0

∫ Δz

0

∫ Δz

0
〈bx[x⊥(z′), z′]bx[x⊥(z′′), z′′]〉dz′dz′′.

(23)
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With the assumption of statistical homogeneity, one can write

〈Δx2〉 = 1

B2
0

∫ Δz

0

[∫ Δz−z′

−z′
〈bx(0, 0)bx[�x′

⊥(z), z]〉dz

]
dz′,

(24)
where �x′

⊥ ≡ x⊥(z′′) − x⊥(z′) and z ≡ z′′ − z′ for locations
along a field line trajectory. Since we aim to address asymptotic
diffusion for large Δz, which occurs when the correlation
vanishes after a very long distance, we can extend the limits
of the z integration to ±∞, in which case the z′ integration is
trivial. Then we obtain

〈Δx2〉 = Δz

B2
0

∫ ∞

−∞
〈bx(0, 0)bx[�x′

⊥(z), z]〉dz, (25)

which is related to the Taylor–Green–Kubo formula for the
diffusion coefficient (Taylor 1920; Green 1951; Kubo 1957).

As an aside, we note that even before making any special as-
sumptions, such as Corrsin’s hypothesis, we can make general
statements about the diffusion coefficient for 2D+slab turbu-
lence. Given Equation (2) and the statistical independence of
slab and 2D fields, and using D⊥ = 〈Δx2〉/(2Δz), we have

D⊥ = 1

B2
0

∫ ∞

0

〈
bslab

x (0)bslab
x (z)

〉
+

〈
b2D

x (0)b2D
x [�x′

⊥(z)]
〉
dz.

(26)
We refer to the terms on the right-hand side as the slab
contribution and 2D contribution, respectively. We note that
the slab contribution depends on the slab field alone; however,
the function �x′

⊥(z) for a given field line involves both 2D and
slab fields, so both of them influence the 2D contribution to the
diffusion coefficient.

Next, our first key assumption is Corrsin’s independence hy-
pothesis (Corrsin 1959). This assumption relates the Lagrangian
correlation function in Equation (25) to the Eulerian correlation
function, Rxx ≡ 〈bx(0, 0)bx(x⊥, z)〉, averaged using the condi-
tional probability P (x⊥|z) of finding a displacement x⊥ after a
distance z:

〈bx(0, 0)bx[�x′
⊥(z), z]〉 =

∫
Rxx(x⊥, z)P (x⊥|z)dx⊥.

Corrsin’s hypothesis is a good approximation if (but not only
if) one can assume independence between the distribution (for
fixed Δz′) of the Eulerian product bx(0, 0)bx(x⊥, z) and the
probability distribution P (x⊥|z). For sufficiently long Δz′ along
a random walk with no “memory” of its prior path, one can
safely assume such independence. This can be expected to be
valid for distances where asymptotic diffusion applies in the first
three of the four regimes described in Section 2.2. However, in
the fourth regime, with a very weak slab contribution and strong
trapping that results in a quasi-periodic trajectory along 2D flux
surfaces (Figure 2(d)), the random walk has a “memory” in the
sense of repeating the same path many times, and the validity of
the hypothesis is unclear. In Section 4, we will further discuss
the validity of Corrsin’s hypothesis and other assumptions in
our theories.

At this point, we employ the 2D+slab model, with statistically
independent 2D and slab components, so that

Rxx(x⊥, z) = Rslab
xx (z) + R2D

xx (x⊥). (27)

Using only the slab portion Rslab
xx , we can find the slab contribu-

tion to the mean squared displacement:

〈Δx2〉slab = Δz

B2
0

∫ ∞

−∞
Rslab

xx (z)dz. (28)

Note that the conditional probabilities play no role and simply
integrate to 1, because the slab turbulence is independent of
the displacement x⊥. Employing the power spectrum Pxx, the
Fourier transform of Rxx, we obtain

Dslab
⊥ =

√
π

2

P slab
xx (0)

B2
0

= 〈b2
x〉slab

B2
0

�c (29)

for the slab correlation length �c, as originally derived by Jokipii
& Parker (1968). In terms of the slab fraction, fs, we have

Dslab
⊥ = fs

2

b2

B2
0

�c. (30)

This expression, with a dependence on the square of the fluc-
tuation amplitude, is called quasilinear because it would re-
sult from a quasilinear approximation in which an unperturbed
path (e.g., the mean field line) is used to estimate the perturba-
tions due to fluctuations. However, in this case the slab turbu-
lence is strictly independent of the path (depending only on the
z-coordinate), so the quasilinear result is not an approximation
and is non-perturbative, i.e., not restricted to a small fluctuation
amplitude.

Now turning to the calculation of 〈Δx2〉2D, we make a second
key assumption that the conditional probability is Gaussian and
independent for displacements in the x- and y-directions:

P (x⊥|z) = P (x|z)P (y|z)

P (x|z) = 1√
2πσ 2

x

exp

(
− x2

2σ 2
x

)

P (y|z) = 1√
2πσ 2

y

exp

(
− y2

2σ 2
y

)
. (31)

In this work we consider the axisymmetric case, so σ 2
x = σ 2

y .
The third key assumption specifies σ 2

x and σ 2
y as a function of

z. At this point, previous work has assumed diffusive spreading
of field lines over the distance scales relevant to decorrelation
of the random walk. That is,

σ 2
x = σ 2

y = 2D⊥z. (32)

We call this DD as suggested in Section 2.2. This leads to the
result originally derived by Matthaeus et al. (1995),

D2D
⊥ = λ̃√

2

b2D

B0
(33)

D⊥ = Dslab
⊥
2

+

√(
Dslab

⊥
2

)2

+
(
D2D

⊥
)2

, (34)

where we use a slightly different definition of the “ultrascale” λ̃
(see also Ruffolo et al. 2004; Matthaeus et al. 2007):

λ̃ ≡
√

〈a2〉
b2

2D

, (35)
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in terms of the mean squared potential function a(x, y) (see
Section 2.1).

As discussed in Section 2.2, we expect such Bohm diffusion
for D2D

⊥ , based on DD (Equation (32)), to apply for moderately
strong slab turbulence (the second regime). For a slab contri-
bution that is strong or weak (but not very weak), we instead
expect RBD, which provides other routes to Bohm diffusion.
Starting with the first regime, for a strong slab contribution, the
derivation proceeds as follows.

In place of the assumption of diffusive spreading
(Equation (32)), which corresponds to Equation (18) of
Ruffolo et al. (2004), let us consider the case where there is
ballistic spreading in random directions over the distance scales
relevant to decorrelation of the random walk. We identify these
random trajectories with the one-point statistics of the magnetic
field, consisting of the mean field plus axisymmetric fluctua-
tions. For this ensemble of straight-line (ballistic) trajectories
(see Figure 2(a)), we use

σ 2
x = σ 2

y =
〈
b2

x

〉
B2

0

z2. (36)

For this regime, 〈b2
x〉 refers to the sum of 2D and slab compo-

nents, because both contribute to the RBD; thus we call this the
RBD/2D+slab model. Continuing with the derivation of 〈Δx2〉,
we express the 2D correlation function R2D

xx (x⊥) in terms of its
Fourier transform, the power spectrum P 2D

xx (kx, ky):

R2D
xx (x⊥) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
P 2D

xx (kx, ky)e−ikxxe−ikyydkxdky.

(37)
Combining Equations (25) and (27) for the 2D contribution, we
obtain

〈Δx2〉2D = 1

2π

Δz

B2
0

∫ ∞

−∞

∫ ∞

−∞
P 2D

xx (kx, ky)

×
∫ ∞

−∞

(∫ ∞

−∞
e−ikxxP (x|z)dx

)

×
(∫ ∞

−∞
e−ikyyP (y|z)dy

)
dzdkxdky, (38)

and specifying the conditional probabilities as Gaussian
(Equation (31)) with random ballistic spreading (Equation (36)),
we obtain∫ ∞

−∞
e−ikxxP (x|z)dx = exp

(
−1

2
k2
xσ

2
x

)

= exp

(
−1

2

〈b2
x〉

B2
0

k2
xz

2

)
. (39)

Using the analogous result for the integral over y, and using
k2
⊥ ≡ k2

x + k2
y , the integral over z in Equation (38) becomes

∫ ∞

−∞
exp

(
−1

2

〈b2
x〉

B2
0

k2
⊥z2

)
dz =

√
2πB2

0

〈b2
x〉

1

k⊥
(40)

and now we have

D2D
⊥ = 〈Δx2〉2D

2Δz

=
√

π

2

1

B0

√〈b2
x〉

1

2π

∫ ∞

−∞

∫ ∞

−∞

P 2D
xx (kx, ky)

k⊥
dkxdky

=
√

π

2

1

B0b

1

2π

∫ ∞

−∞

∫ ∞

−∞

P 2D(kx, ky)

k⊥
dkxdky, (41)

where we use the trace of the spectral matrix, P 2D ≡
P 2D

xx + P 2D
yy .

Next we make use of the total correlation length of the 2D
fluctuations, λc2 (Matthaeus et al. 2007), which is the correlation
length of P 2D. In our notation, λc2 is given by

b2
2D λc2 = 1

2π

∫ ∞

−∞

∫ ∞

−∞

P 2D(kx, ky)

k⊥
dkxdky. (42)

From this we obtain

D2D
⊥ =

√
π

2

b2
2D

B0b
λc2 =

√
π

2
(1 − fs)

b

B0
λc2. (43)

This has the noteworthy property of scaling as b/B0, represent-
ing Bohm diffusion. This demonstrates an alternative path to
Bohm diffusion, which is novel in the present context, although
anticipated to some degree by Kadomtsev & Pogutse (1979).
Recall that a heuristic argument for this functional dependence
was provided in Section 2.2.

In contrast with the calculation for DD, for RBD there is no
implicit dependence of D2D

⊥ on D⊥. Therefore, the quasilinear
slab contribution and Bohm 2D contribution combine in a direct
sum (see also Section 2.2):

D⊥ = Dslab
⊥ + D2D

⊥ . (44)

Another difference is the characteristic length scale: RBD results
in a diffusion coefficient that depends on the total correlation
length (i.e., the k−1

⊥ moment of the 2D power spectrum), whereas
for DD it involves the ultrascale (based on the k−2

⊥ moment).
A similar calculation can be performed for a weak (but not

very weak) slab contribution, which is the third regime described
in Section 2.2. Here we employ RBD, but consider that the slab
contribution is diffusive and makes little contribution. Thus, we
use the RBD/2D model, and Equation (36) is modified to use
the 2D field instead of the sum of 2D+slab fields:

σ 2
x = σ 2

y = 〈b2
x〉2D

B2
0

z2. (45)

This change propagates to change b → b2D in Equation (43),
so we obtain

D2D
⊥ =

√
π

2

b2D

B0
λc2 =

√
π

2

√
1 − fs

b

B0
λc2. (46)

This again represents Bohm diffusion, in analogy with
Equation (43). This then directly sums with the quasilinear slab
contribution,

D⊥ = Dslab
⊥ + D2D

⊥ , (47)

to yield a novel route to Bohm diffusion.

3. COMPUTER SIMULATIONS

3.1. Techniques

Computer simulations were also used to analyze the diffusion
coefficient in 2D+slab turbulence. Because they do not rely
on assumptions of the analytic calculation such as Corrsin’s
hypothesis, Gaussian displacement distributions, DD, or RBD,
they provide an independent check of the validity of the analytic
calculations. The simulations involved two steps.

1. Generating representations of axisymmetric slab and 2D
magnetic fields with desired statistical properties by

7
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means of inverse fast Fourier transforms from k-space
representations.

2. Tracing the magnetic field lines by solving the coupled
ordinary differential Equations (3) using a fourth-order
Runge–Kutta method with an adaptive step size regulated
by a fifth-order error estimate step (Press et al. 1992).

To generate representations of the slab and 2D magnetic
fields, we first set the desired power spectrum for each com-
ponent. For slab fluctuations, we used

P slab
xx (kz) = P slab

yy (kz) = Cslab

[1 + (kzλ)2]5/6
, (48)

where Cslab is a normalization constant, set so as to obtain the
desired slab turbulence energy 〈b2〉slab = fsb

2, and λ is a parallel
coherence scale that is directly related to the correlation length
�c. This spectral form is constant in an energy-containing range
at low kz and follows a Kolmogorov power law (Pxx ∝ k

−5/3
z )

for turbulence in the inertial range, much like observed fluctu-
ations in the solar wind (e.g., Jokipii & Coleman 1968; Bieber
et al. 1996). Our simulations have insufficient dynamic range
to model a dissipation range at higher kz, and in any case we
will make comparisons with “discrete theory” formulae for the
actual power spectra and k values used in the simulations, so
as to test whether the theory correctly specifies the influence of
each Fourier mode on the field line diffusion (see also Ruffolo
et al. 2006). The power spectrum Pii for i = x, y is proportional
to the squared Fourier amplitude, |bi(kz)|, so we derive bi(kz)
from the square root of the power spectrum times exp[iϕi(kz)],
where each random phase ϕi for each discrete Fourier
mode is independent. The slab magnetic fields in real space
are derived from one-dimensional (1D) inverse fast Fourier
transforms.

For 2D fluctuations, note that b2D
x and b2D

y are not independent.
Both are related to the potential function by b = ∇ × [a(x, y)ẑ].
For the magnetic power spectra in k-space, this implies that

Pxx = k2
yA(k⊥) Pyy = k2

xA(k⊥), (49)

where A(k⊥) is the axisymmetric power spectrum for the
potential function a(x, y). The function of A that we use is

A(k⊥) = C2D

[1 + (k⊥λ⊥)2]7/3
. (50)

Here C2D is set to obtain the desired 2D turbulence energy
〈b2〉2D = (1 − fs)b2, and λ⊥ is a perpendicular coherence
scale. Note that the omnidirectional power spectrum, a quantity
of relevance to turbulence theory, is a spectral density in
terms of the magnitude of k. For the 2D component, we have
E(k⊥) ∼ k⊥(Pxx + Pyy) = k3

⊥A(k⊥) (see also Ruffolo et al.
2004; Matthaeus et al. 2007), and Equation (50) provides a
Kolmogorov power law for the omnidirectional power spectrum
in the inertial range. Note also that the power spectra have a
k2
⊥-dependence in the energy-containing range as required for

homogeneity, and they give rise to a finite ultrascale λ̃ of order
�⊥ (Matthaeus et al. 2007). For each mode in our discrete 2D
Fourier space, we derive a(k) from

√
A(k⊥) times exp[iϕ(k)] for

an independent random phase ϕ. We then derive the components
bi(k) and perform 2D inverse Fourier transforms to obtain
bi(x, y). When summed, the 2D+slab fields vary in all three
dimensions, yet each component only requires a 1D or a 2D

transform, which is computationally much less expensive than
the corresponding three-dimensional transform. This is a major
advantage of the 2D+slab magnetic field model.

In the computer code, we set λ = λ⊥ = 1. Therefore, the
diffusion coefficients D that we present are also the scaled
diffusion coefficients D′ = D(λ/λ2

⊥) that depend only on r
and fs (see Section 2.2). To obtain D for other λ and λ⊥,
our reported value serves as D′ for the desired values of
r and fs, from which one can obtain D = D′(λ2

⊥/λ). We
generate slab fields over a periodic box of length Lz = 100,000
with Nz = 222 = 4,194,304 grid points and 2D fields over
Lx = Ly = 100 with Nx = Ny = 4096 points.

We traced each magnetic field line, i.e., solved the coupled
ordinary differential Equations (3), up to z = 2500, which is
2.5% of the box length. For each value of r and fs, we traced
1000 field lines. For these the slab representation was kept fixed,
but each field line was started at a random z location along the
periodic box. After every 10 field lines, a new 2D representation
was generated, to help ensure sufficient sampling of the possible
variety of 2D topologies. The initial location of each field line
was also random in the x- and y-directions. After tracing these
1000 field lines, another program examined pairs of z values
separated by Δz along the same field line, and combined data
for all field lines to obtain the mean squared perpendicular
displacements 〈Δx2〉 and 〈Δy2〉, as well as Dx = 〈Δx2〉/(2Δz)
and Dy = 〈Δy2〉/(2Δz), for each parallel displacement Δz. For
lower Δz values, more samples are available and this implies
better statistics for the results. Examples of diffusion coefficients
are shown in Figure 3.

In Figure 3, the diffusion coefficient initially rises at low Δz.
This is due to the free-streaming regime, where field lines have
not yet decorrelated from their initial trajectory. One technical
point is that our formulae for Di are in essence averages of a
running diffusion coefficient D̃i = (1/2)(d〈Δx2〉/dz) from 0
to Δz. Such averaging provides better statistics, but it allows
the free-streaming regime to influence the values Di over
displacements Δz much longer than the coherence length λ.
Another technical point is that in Figure 3(a), the values of Di
are seen to slightly decrease over Δz from 500 to 1000. This is
due to a periodicity effect. Unlike higher-dimensional fields, the
slab field varies only along z and therefore exactly repeats after
Δz = Lz = 105. For pure slab turbulence, a perpendicular mean
squared displacement such as Δx2 returns to zero at Δz = Lz,
and indeed takes the form Δx2 ∝ | sin(πΔz/Lz)| (Chuychai
2005). Such effects are present even when adding a 2D field
component. Thus, Figure 3(a) is interpreted as showing free
streaming followed by asymptotic diffusion, with values of Di
that decrease slightly as Δz increases above 500 due to the slab
periodicity effect.

To determine diffusion coefficients D⊥ ≡ (Dx + Dy)/2 from
data such as those in Figure 3, we evaluate the following: D⊥p,
the peak value over Δz = 0–500, D⊥1, a weighted average
over Δz = 500–1000, and D⊥2, a weighted average over
Δz = 1200–2499. We also report the analogous quantities Dx1
and Dy1. The weight was proportional to zmax−Δz, where zmax is
the maximum value of Δz used in the averaging. This puts more
weight on lower Δz values, which have better statistics because
more pairs of points are available for smaller displacements.
The diffusion coefficients we report from simulation results are
“average 1” values (D⊥1, Dx1, or Dy1) except where noted. In
most cases this range of Δz values is high enough to measure
asymptotic diffusion and low enough to avoid strong slab
periodicity effects.
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Figure 4. Magnetic field line diffusion coefficients as a function of the slab fraction fs for a scaled fluctuation amplitude r = 10 (i.e., b/B0 = 10), (a) overall and (b)
subtracting the slab contribution in order to determine the 2D contribution. Computer simulation results (symbols) and models of Bohm diffusion (lines) are shown. In
this case there is a strong slab contribution, and RBD/2D+slab (see Figure 2(a)) can accurately model the 2D contribution, except at very low fs, where the diffusion
coefficient is suppressed due to trapping effects (shaded region).

Figure 3(b) shows a case where subdiffusion is evident from
the peak in Di followed by a concave decrease. At Δz > 500
the diffusion coefficient appears to decrease, but this may be
due to the periodicity effect described above. Therefore, in the
present work we simply report whether there is evidence for
some subdiffusion and do not attempt to determine whether the
asymptotic behavior is diffusive or subdiffusive.

Another technical concern for a very low slab fraction fs
is that field lines may be nearly confined to 2D flux surfaces
(i.e., these surfaces are nearly undisturbed), and there is an
artifact of the simulations that some 2D equipotential contours
and flux surfaces span the periodic box and therefore have
infinite extent in x or y, whereas they would be closed structures
if the periodic box were larger (or non-existent in the case
of an astrophysical plasma). We tried different perpendicular
box lengths for r = 0.1, the case that should be the most
sensitive to such effects, and concluded that the results are
reasonably independent of the perpendicular box length so long
as fs � 0.01. We therefore do not examine the FLRW for
fs < 0.01 in the present work.

3.2. Results

We examine the validity of quasilinear diffusion, various
routes to Bohm diffusion, and trapping effects in the FLRW
for 2D+slab turbulence by performing computer simulations
for many values of the scaled fluctuation amplitude r =
(b/B0)(λ/λ⊥) and the slab fraction fs = b2

slab/b
2. Note that for

a given value of fs, the parameter r is proportional to Dslab
⊥ /D2D

⊥ .
Thus, our choice of r sets the relative strength of the slab
contribution, and we use the fs-dependence to distinguish be-
tween the three types of Bohm diffusion: DD (Matthaeus et al.
1995), random ballistic diffusion with 2D and slab contribu-
tions (RBD/2D+slab), and random ballistic diffusion with a 2D
contribution only (RBD/2D). Note also that the results shown
here are for λ = λ⊥ = 1, so r is numerically equal to b/B0.
Given our assumption of axisymmetry, our results for Dx and
Dy represent independent determinations of D⊥, and their dif-
ference indicates the statistical uncertainty of our simulation
results. For all models we show the predictions of discrete
theory, in which integrals over k-space are replaced by dis-

crete sums over the Fourier modes used in the simulations, so
as to reduce discretization error and more accurately test the
theories.

Figure 4 shows results for r = 10, where the slab contri-
bution is typically strong. Recall that the slab contribution is
quasilinear, with Dslab

⊥ ∝ fs (Equation (30)), and indeed the
overall diffusion coefficient D⊥ is dominated by such a trend
(Figure 4(a)). The three models of Bohm diffusion yield only
minor differences in D⊥, but the ∼1% precision of our results
is sufficient to distinguish between them.

To more clearly compare the simulation results with the three
models of Bohm diffusion for the 2D contribution, in Figure 4(b)
we subtract out the slab contribution. The slab contribution is
generally accepted to be quasilinear and hence proportional to
fs, so we can subtract it to show D⊥ − Dslab

⊥ for each of the
models. For simulation results, we subtract fs times the value
of D⊥ = (Dx + Dy)/2 for pure slab fluctuations (fs = 1). The
simulation results agree very well with the RBD/2D+slab model
of the 2D contribution, as expected in Section 2 for the case of
a strong slab contribution. The agreement is clearly better than
for the RBD/2D or DD model. Note that the DD model for
D⊥ − Dslab

⊥ is concave in Figure 4(b) because of the special
quadratic addition of D2D

⊥ with Dslab
⊥ (Equation (34)). The other

two models use a direct sum, so D⊥ − Dslab
⊥ is simply D2D

⊥ .
For low slab fractions, the field line diffusion coefficient drops

sharply compared with the models. This is true for every r value
we studied (see Figures 4–7), indicating that some other factors
besides the Bohm diffusion need to be taken into account. The
decrease in D⊥ can be attributed to trapping effects, as we shall
discuss shortly.

Figure 5 shows results for r = 1. For fs > 0.1, both DD
and RBD/2D provide rough approximations to D⊥, but with
errors of ∼10% and somewhat inaccurate representations of
the fs-dependence. These ambiguous results could be attributed
to a transition between routes to Bohm diffusion as the slab
contribution varies with fs.

Results for r = 0.3 are shown in Figure 6. Here the simulation
results are best explained in terms of a 2D contribution given by
the DD model with trapping effects at low fs. This is consistent
with the expectation that DD should be valid for a moderate slab
contribution.

9
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Figure 5. Like Figure 4, but for r = 1. In this intermediate regime, two models of Bohm diffusion (DD and RBD/2D) can roughly describe the 2D contribution,
except at very low fs where trapping effects are evident (shaded region).

Figure 6. Like Figure 4, but for r = 0.3. Here there is a moderate slab contribution, and DD as in Matthaeus et al. (1995) (see Figure 2(b)) can explain the 2D
contribution, except at low fs where trapping effects are evident (shaded region).

Figure 7. Like Figure 4, but for r = 0.1. Here there is a weak slab contribution, and RBD/2D (see Figure 2(c)) can accurately model the 2D contribution, except at
low fs where trapping effects are evident (shaded region). Note that at high fs, DD can also model the 2D contribution.

Figure 7 shows our results for r = 0.1. Note that for this
figure we display values of Dx2 and Dy2 (weighted averages
over Δz = 1200–2499) because in some cases the influence of
the free-streaming regime persisted during our usual averaging

interval for Dx1 and Dy1 (the interval of Δz = 500–1000). Again
there are trapping effects for low fs, and for moderate to high fs
the simulation data are best explained in terms of the RBD/2D
model, as expected for the low slab contribution at such a low

10
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Figure 8. Magnetic field line diffusion coefficients D⊥ from computer simu-
lations as a function of the slab fraction fs for (a) r = 1, (b) r = 0.3, and
(c) r = 0.1. Trapping effects for very low slab contributions (see Figure 2(d))
are identified in terms of deviations from the high-fs trends in Figures 5–7.
Symbols represent D⊥p (triangles), D⊥1 (circles), and D⊥2 (asterisks) for in-
creasing z-ranges as defined in the text. Subdiffusion is identified from a system-
atic decrease in D⊥ values for increasing z. While trapping effects are limited
to low fs values, subdiffusion is limited to even lower fs.

value of r (see Section 2). Note that the DD model also matches
the simulation results at high fs.

Results for fs � 0.5 are shown in Figure 8 for various val-
ues of r, in order to further examine the trapping effects. For
one thing, we note that the decreases in D⊥ imply changes
in the 2D contribution to field line diffusion, because at very
low fs values the slab contribution is so small that its complete
removal could not explain the decrease. The arrows that indi-
cate trapping in this figure give only a rough indication of the
range in fs where trapping effects apparently cause a reduc-
tion in D⊥ below the appropriate model trend. For example,
for r = 0.3 the decline in D⊥ at low fs could be partially due
to a transition between routes to Bohm diffusion (from DD to
RBD/2D). However, while trapping effects are evident, as antic-
ipated in many previous studies (see Section 1), the simulation
results remain within a factor of two of all models of Bohm
diffusion.

While trapping effects are indicated by a reduction in D⊥
at low fs values, they cause subdiffusion only at an even lower
range in fs. This can be seen in Figure 8, where different symbols
indicate simulation results for D⊥ in different ranges of Δz (as
specified in Section 3.1). Arrows indicate ranges of fs where
subdiffusion is manifest as a systematic decrease in D⊥ values
for increasing Δz-ranges.

4. DISCUSSION AND CONCLUSIONS

A high level of precision has been achieved in performing
simulations of the magnetic FLRW for disturbed flux surfaces.
For a wide range of parameter values, good agreement can be
obtained with the appropriate model. Such precision is obtained
in part because we typically use results for Δz < 0.01Lz in order
to avoid slab periodicity effects. In this work we point out that
there are multiple routes to Bohm diffusion and present analytic
theories for these, and the precision of the simulation results is
the key to distinguishing among them.

This work employed the 2D+slab model of magnetic turbu-
lence, which has provided a useful description of turbulence in
the interplanetary medium. We have employed random-phase
models of the slab and 2D turbulence components. Some recent
studies of the spatial patterns of turbulent FLRWs have em-
ployed a more physical 2D MHD model of the 2D component
(Kittinaradorn et al. 2009; Seripienlert et al. 2010). We there-
fore performed simulations to check the difference between D⊥
for a 2D random-phase field and a 2D MHD field. The latter
type of field is more difficult to generate and therefore we had a
smaller sample size and encountered a larger statistical uncer-
tainty. Within such uncertainty, we found no difference between
D⊥ for the two types of fields. This may be because the 2D
contribution involves an integral of the power spectrum with a
weighting of k−1

⊥ or k−2
⊥ , and the low-k⊥ modes are relatively

unchanged by the 2D MHD dynamics (Seripienlert et al. 2010).
Therefore, we conclude that random-phase fields seem to be
sufficiently accurate for computer simulations of D⊥.

Trapping effects are clearly evident at a low slab fraction,
fs, and the FLRW exhibits subdiffusion at even lower fs. The
trapping phenomenon was anticipated in numerous theoretical
studies for the nearly 2D limit (see Section 1), and indicates
at least a partial failure of the assumptions underlying our
theories of Bohm diffusion in these parameter ranges. Because
of subdiffusion, we do not obtain a well-defined diffusion
coefficient for nearly 2D fluctuations, making it difficult to
compare our simulation results with specific predictions for D⊥
from percolation theory. Indeed, subdiffusion was not addressed
in classical percolation models, though it has been seen in
previous numerical results in the nearly 2D limit for the FLRW
(Ruffolo et al. 2008) and for related problems (e.g., Ottaviani
1992).

A question that frequently arises in the literature is: when is
Corrsin’s hypothesis valid? (For some general considerations,
see Weinstock 1976.) In the context of our work, one can
pose three related questions. (1) Is there a substantial violation
of independence between bx(0, 0)bx(x⊥, z) and P (x⊥|z)? (See
Section 2.3.) (2) Given a violation of independence, is there a
non-negligible error of approximation in Corrsin’s hypothesis?
(3) Given an error in Corrsin’s hypothesis, is there a significant
effect on the integral over the Lagrangian correlation to obtain
a running or asymptotic diffusion coefficient?

In some cases we can answer question (1). A memory
effect is likely to produce a violation of independence. Since
subdiffusion implies a negative Lagrangian correlation and
hence a negative memory effect (see also Ruffolo et al. 2008), a
subdiffusive regime does indicate a violation of independence.
Furthermore, we are convinced that independence is always
violated for very short distances z, in the free-streaming regime.
However, it is not obvious whether or when this implies an
error in Corrsin’s hypothesis or an effect on the diffusion
coefficient (especially for large Δz). To address questions (2)
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and (3), we must note that our analytic derivations introduce
two additional assumptions: setting P (x⊥|z) to be Gaussian and
specifying a functional form for the mean squared displacement.
For the numerous cases when a combination of quasilinear and
Bohm diffusion can match the simulation results for the FLRW
diffusion coefficient, we can answer (3) and infer no significant
effects of the violation of Corrsin’s hypothesis. When there is a
significant difference from the simulation results (especially for
low slab fractions), we cannot necessarily infer a violation of
Corrsin’s hypothesis or effects thereof, because there may also
be difficulties with the other assumptions of the theory.

Indeed, the present work stresses the importance of the as-
sumption of a particular physical process leading to decorrela-
tion. This leads to adoption of a functional form for the mean
squared displacement in P (x⊥|z). One of the concrete results of
the present paper is that while DD may be responsible for the
diffusive FLRW under some conditions, the random free stream-
ing seems to be responsible under other conditions. Hence there
are multiple routes to Bohm diffusion. In actuality, there should
be a transition from free streaming to diffusion, so RBD and
DD represent limiting behaviors. Further work to investigate
such a transition could clarify the range of applicability of each
diffusion model.

It is interesting to note that our functional form for D2D
⊥

with Bohm diffusion due to RBD (Equation (43) or (46)) can
also be obtained using a non-Gaussian probability distribution
P (x⊥|z). Inspired by the delta-function form of Webb et al.
(2006), with a single velocity used to treat the ballistic transport
of a distribution of particles, we have repeated the calculations
of Section 2.3 using P (x⊥|z) = δ[x − (b/B0)z]δ(y). We obtain
the same results as in Equations (43) and (46), except that
the prefactor is lower by

√
π . This model employs a specific

value of b at low z, b = bx̂ (which indeed could be rotated
throughout the x–y plane), before randomization of the field at
greater z. The resulting diffusion model could be called ballistic
diffusion (as opposed to random ballistic diffusion). While one
does not normally expect such a “prepared” initial condition
in an astrophysical plasma, and with the reduced prefactor the
model evidently does not match our computer simulations in
which b has a Gaussian distribution, it does demonstrate that
this form of Bohm diffusion does not rely on the assumption of
a Gaussian probability distribution.

In this work, we have concentrated on relatively small
differences between models of the field line diffusion coefficient
in 2D+slab turbulence. Thus, it is important to consider that in
a broad perspective, all three models of Bohm diffusion for the
2D contribution, combined with quasilinear diffusion for the
slab contribution, can explain all our simulation data to within
a factor of two (spanning over three orders of magnitude in D⊥,
two orders in fs, and two orders in r). While trapping effects
and subdiffusion are sometimes seen in the simulation results,
and there is room for further model development concerning
such effects as well as the transition between routes to Bohm
diffusion, the strong rejection of Bohm diffusion by some
previous authors would seem to be inappropriate, at least based
on this extensive set of simulations for 2D+slab fluctuations.

It is interesting to compare the FLRW for the two-component
2D+slab model of magnetic turbulence, as examined here, with
results from a one-component model of isotropic turbulence that
is stretched (or squashed) in k-space, as simulated in the recent
work by Hauff et al. (2010). That work examined the FLRW
by means of particles that followed field lines with little pitch
angle scattering. According to that work, when a 2D structure

“decays” as a function of z, a previously trapped field line
becomes open. However, according to Chuychai et al. (2007),
in 2D+slab turbulence the slab field can always carry some field
lines out of a 2D structure, without requiring the structure to
“decay.” This might be a reason why Zimbardo et al. (2000) and
Hauff et al. (2010) did not find a clear regime of Bohm diffusion
during their reported transition in the FLRW from quasilinear
to percolative behavior.

In conclusion, we have examined a magnetic fluctuation
model in which the random walk of field lines exhibits quasi-
linear diffusion, Bohm diffusion, and trapping effects over var-
ious parameter ranges, showing that these behaviors are not
mutually exclusive. Trapping effects, and sometimes even sub-
diffusion, are found in the limit where the FLRW is largely
constrained to only weakly disturbed 2D flux surfaces. In ad-
dition to a previously described route to Bohm diffusion based
on DD (Matthaeus et al. 1995), we have developed variant ana-
lytic theories for additional routes to Bohm diffusion involving
RBD. Computer simulations verify that each type of Bohm dif-
fusion provides a useful description of field line diffusion over
a different parameter range.
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